Compact thermal models (CTMs) are simplified multi-nodal thermal resistor network representations of the detailed material and geometric structure of the electronic package. CTMs predict the thermal response of the package, in various environments, to within an accuracy of 2%. The junction temperature of the package is typically obtained by solving the linear algebraic network equations of the CTM, with the heat transfer to the ambience modeled by a convection coefficient obtained from handbooks, assuming identical ambient conditions imposed on all nodal surfaces. This approach may give misleading results as the ambience at each nodal surface can differ depending on the cooling flow patterns at that surface. In this work, a methodology is presented where the network equations of the CTM are integrated into the governing fluid flow and energy equations solved by computational fluid dynamics (CFD). The CTM+CFD approach predicts a significantly (20–30%) higher junction temperature as compared to the conventional CTM network solver method, even when the convection coefficient used in the latter case is obtained more accurately from CFD, rather than from handbook correlations. It is also found that CFD computations assuming uniform flux at the package surfaces (and ignoring the internal resistance of the package) vastly under-predict the junction temperature. The new approach offers a promising alternative for electronic package thermal design and is highly advantageous where the internal geometric and material configurations are not known due to proprietary concerns.

1.
Liu
,
Y.
,
Nhan
,
P. T.
,
Kemp
,
R.
, and
Luo
,
X. L.
, 1997, “
Three-Dimensional Coupled Conduction-Convection Problem for Three Chips Mounted on a Substrate in an Enclosure
,”
Numer. Heat Transfer, Part A
1040-7782,
32
, pp.
149
167
.
2.
Alawadhi
,
E. M.
, 2005, “
Forced Convection Cooling Enhancement for Rectangular Blocks Using a Wavy Plate
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
3
), pp.
525
533
.
3.
Asako
,
Y.
, and
Fagri
,
M.
, 1988, “
Three-Dimensional Heat Transfer and Fluid Flow Analysis of Arrays of Square Blocks Encountered in Electronic Equipment
,”
Numer. Heat Transfer
0149-5720,
13
, pp.
481
498
.
4.
Davalath
,
J.
, and
Bayazitoglu
,
Y.
, 1987, “
Forced Convection Cooling Across Rectangular Blocks
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
321
328
.
5.
Icoz
,
T.
, and
Jaluria
,
Y.
, 2004, “
Design of Cooling Systems for Electronic Equipment Using Both Experimental and Numerical Inputs
,”
ASME J. Electron. Packag.
1043-7398,
126
, pp.
465
471
.
6.
Yang
,
R. J.
, and
Fu
,
L. M.
, 2001, “
Thermal and Flow Analysis of a Heated Electronic Component
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2261
2275
.
7.
Young
,
T. J.
, and
Vafai
,
K.
, 1998, “
Convective Flow and Heat Transfer in a Channel Containing Multiple Heated Obstacles
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
3279
3298
.
8.
Aranyosi
,
A.
,
Ortega
,
A.
,
Griffin
,
R. A.
,
West
,
S.
, and
Edwards
,
D. R.
, 2000, “
Compact Thermal Models of Packages Used in Conduction Cooled Applications
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
(
3
), pp.
470
480
.
9.
Sabry
,
M. N.
, 2005, “
Compact Thermal Models for Internal Convection
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
1
), pp.
58
64
.
10.
Bar-Cohen
,
A.
,
Elperin
,
T.
, and
Eliasi
,
B.
, 1989, “
θj−c: Characterization of Chip Packages-Justification, Limitation and Future
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
12
(
4
), pp.
724
731
.
11.
Eggink
,
H. J.
,
Janssen
,
G. M.
, and
Janssen
,
J. H. J.
, 2003, “
Using Compact Models in the Early Thermal Design of Electronics
,”
19th IEEE Semi-Therm Symposium
.
12.
Lasance
,
C. J. M.
, 2001, “
Two Benchmarks to Facilitate the Study of Compact Thermal Modeling Phenomena
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
4
), pp.
559
565
.
13.
Arunasalam
,
P.
,
Seetharamu
,
K. N.
, and
Abdul
,
I.
, 2005, “
Determination of Thermal Compact Model via Evolutionary Genetic Optimization Method
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
28
(
2
), pp.
345
352
.
14.
Shidore
,
S.
,
Adams
,
V.
, and
Lee
,
T. Y. T.
, 2001, “
A Study of Compact Thermal Model Topologies in CFD for a Flip Chip Plastic Ball Grid Array Package
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
(
2
), pp.
191
198
.
15.
Sabry
,
M. N.
, 2003, “
Compact Thermal Models for Electronic Systems
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
179
185
.
16.
Lasance
,
C. J. M.
,
Vinke
,
H.
, and
Rosten
,
H.
, 1995, “
Thermal Characterization of Electronic Devices With Boundary Condition Independent Compact Models
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
18
(
4
), pp.
723
731
.
17.
Boyalakuntla
,
D. S.
, and
Murthy
,
J. Y.
, 2002, “
Hierarchical Compact Models for Simulation of Electronic Chip Packages
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
2
), pp.
192
203
.
18.
Vinke
,
H.
, and
Lasance
,
C. J. M.
, 1997, “
Compact Models for Accurate Thermal Characterization of Electronic Parts
,”
IEEE Trans. Compon., Packag. Manuf. Technol., Part A
1070-9886,
20
(
4
), pp.
411
419
.
19.
Jaluria
,
Y.
, and
Torrance
,
K. E.
, 2003,
Computational Heat Transfer
,
Taylor & Francis
,
London
.
20.
Eswaran
,
V.
, and
Prakash
,
S.
, 1998, “
A Finite Volume Method for Navier–Stokes Equations
,”
Proceedings of the Third Asian CFD Conference
,
Bangalore, India
.
21.
Sharma
,
A.
, and
Eswaran
,
V.
, 2004, “
Heat and Fluid Flow Across a Square Cylinder in the Two-Dimensional Laminar Flow Regime
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
247
269
.
22.
Leonard
,
B. P.
, 1979, “
A Stable and Accurate Convective Modeling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
23.
Ghia
,
U.
,
Ghia
,
K. N.
, and
Shin
,
C. T.
, 1982, “
High Re Solution for Incompressible Flow Using the Navier–Stokes Equations and a Multi-Grid Method
,”
J. Comput. Phys.
0021-9991,
48
, pp.
387
411
.
24.
Moallemi
,
M. K.
, and
Jang
,
K. S.
, 1992, “
Prandtl Number Effects on Laminar Mixed Convection Heat Transfer in a Lid-Driven Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1881
1892
.
You do not currently have access to this content.