Predicting the fatigue life of solder interconnections is a challenge due to the complex nonlinear behavior of solder alloys and the importance of the load history. Long experience with Sn–Pb solder alloys together with empirical fatigue life models such as the Coffin–Manson rule have helped us identify reliable choices among package design alternatives. However, for the currently popular Pb-free choice of SnAgCu solder joints, designing accelerated thermal cycling tests and estimating the fatigue life are challenged by the significantly different creep behavior relative to Sn–Pb alloys. In this paper, a hybrid fatigue modeling approach inspired by nonlinear fracture mechanics is developed to predict the crack trajectory and fatigue life of a solder interconnection. The model is shown to be similar to well accepted cohesive zone models in its theoretical development and application and is anticipated to be computationally more efficient compared to cohesive zone models in a finite element setting. The approach goes beyond empirical modeling in accurately predicting crack trajectories and is validated against experiments performed on lead-free as well as Sn–Pb solder joint containing microelectronic packages. Material parameters relevant to the model are estimated via a coupled experimental and numerical technique.

1.
Plumbridge
,
W. J.
, 2003, “
The Analysis of Creep Data for Solder Alloys
,”
Soldering Surf. Mount Technol.
0954-0911,
15
(
1
), pp.
26
30
.
2.
Bhate
,
D.
,
Chan
,
D.
,
Subbarayan
,
G.
,
Chiu
,
T. C.
,
Gupta
,
V.
, and
Edwards
,
D.
, 2008, “
Creep and Low Strain Rate Behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu Alloys: Development of Valid Constitutive Models
,”
IEEE Trans. Compon. Packag. Technol.
,
Elsevier
, 7750 pages, in press.
3.
Ma
,
H.
,
Suhling
,
J. C.
,
Lall
,
P.
, and
Bozack
,
M. J.
, 2006, “
Reliability of the Aging Lead Free Solder Joint
,”
Proceedings of 2006 Electronic Components and Technology Conference
, pp.
849
864
.
4.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
, 2000, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
0026-2714,
40
(
2
), pp.
231
244
.
5.
Paris
,
P. C.
,
Gomez
,
M. P.
, and
Anderson
,
W. E.
, 1997, “
A Rational Analytic Theory of Fatigue
,” Selected papers on Foundations of Linear Elastic Fracture Mechanics (A99-25742 06-39), Bethel, CT/Bellingham, WA, Society for Experimental Mechanics/Society of Photo-Optical Instrumentation Engineers (SEM Classic Papers, Vol.
CP 1
;
SPIE Milestone Series
, Vol.
MS 137
), pp.
539
544
.
6.
Anderson
,
T. L.
, 2005,
Fracture Mechanics: Fundamentals and Applications
, 3rd ed.,
CRC
,
Boca Raton, FL
.
7.
Ritchie
,
R. O.
, 1999, “
Mechanisms of Fatigue-Crack Propagation in Ductile and Brittle Solids
,”
Int. J. Fract.
0376-9429,
100
(
1
), pp.
55
83
.
8.
Wells
,
A. A.
, 1961, “
Unstable Crack Propagation in Metals: Cleavage and Fast Fracture
,”
Proceedings of Crack Propagation Symposium
,
Cranfield, UK
, Vol.
1
, Paper No. 84.
9.
Rice
,
J. R.
, 1968, “
A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
379
386
.
10.
Elices
,
M.
,
Guinea
,
G. V.
,
Gomez
,
J.
, and
Planas
,
J.
, 2002, “
The Cohesive Zone Model: Advantages, Limitations and Challenges
,”
Eng. Fract. Mech.
0013-7944,
69
(
2
), pp.
137
163
.
11.
Dugdale
,
D. S.
, 1960, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
0022-5096,
8
, pp.
100
104
.
12.
Barrenblatt
,
G. I.
, 1962, “
The Mathematical Theory of Equilibrium of Cracks in Brittle Fracture
,”
Adv. Appl. Mech.
0065-2156,
7
, pp.
55
129
.
13.
Brocks
,
W.
,
Cornec
,
A.
, and
Scheider
,
I.
, 2003, “
Computational Aspects of Nonlinear Fracture Mechanics
,”
Comprehensive Structural Integrity
,
3
, pp.
127
209
.
14.
Needleman
,
A.
, 1990, “
An Analysis of Decohesion Along an Imperfect Interface
,”
Int. J. Fract.
0376-9429,
42
, pp.
21
40
.
15.
Towashiraporn
,
P.
,
Subbarayan
,
G. S.
, and
Desai
,
C. S.
, 2005, “
A Hybrid Model for Computationally Efficient Fatigue Fracture Simulations at Microelectronic Assembly Interfaces
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
4468
4483
.
16.
Rose
,
J. H.
,
Smith
,
J.
, and
Ferrante
,
J.
, 1981, “
Universal Binding Energy Curves for Metals and Bimetallic Interfaces
,”
Phys. Rev. Lett.
0031-9007,
47
(
9
), pp.
675
678
.
17.
Camacho
,
G. T.
, and
Ortiz
,
M.
, 1996, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
2899
2938
.
18.
Nguyen
,
O.
,
Repetto
,
E. A.
,
Ortiz
,
M.
, and
Radovitzky
,
R. A.
, 2001, “
A Cohesive Model of Fatigue Crack Growth
,”
Int. J. Fract.
0376-9429,
110
, pp.
351
369
.
19.
Roe
,
K. L.
, and
Siegmund
,
T.
, 2003, “
An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
209
232
.
20.
de-Andrés
,
A.
,
Pérez
,
J. L.
, and
Ortiz
,
M.
, 1999, “
Elastoplastic Finite Element Analysis of Three-dimensional Fatigue Crack Growth in Aluminum Shafts Subjected to Axial Loading
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
2231
2258
.
21.
Yang
,
Q. D.
,
Shim
,
D. J.
, and
Spearing
,
S. M.
, 2004, “
A Cohesive Zone Model for Low Cycle Fatigue Life Prediction of Solder Joints
,”
Microelectron. Eng.
0167-9317,
75
, pp.
84
95
.
22.
Abdul-Baqi
,
A. J. J.
,
Schreurs
,
P. J. G.
, and
Geers
,
M. G. D.
, 2005, “
Fatigue Damage Modeling in Solder Interconnections Using a Cohesive Zone Approach
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
927
942
.
23.
Weibull
,
W. A.
, 1951, “
A Statistical Distribution Function of Wide Applicability
,”
ASME J. Appl. Mech.
0021-8936,
18
, pp.
293
297
.
24.
Desai
,
C. S.
,
Chiu
,
J.
,
Kundu
,
T.
, and
Prince
,
J. L.
, 1997, “
Thermomechanical Response of Materials and Interfaces in Electronic Packaging: Part I—Unified Constitutive Models and Calibration
,”
ASME J. Electron. Packag.
1043-7398,
119
, pp.
294
300
.
25.
Solomon
,
H. D.
, 1985, “
Low Cycle Fatigue of 60∕40 Solder Plastic Strain Limited vs. Displacement Limited Testing
,”
Proceedings of ASME Electronic Packaging: Materials Processing
, pp.
29
47
.
26.
SCION IMAGE, Scion Corporation, www.scioncorp.comwww.scioncorp.com
27.
Setty
,
K.
,
Subbarayan
,
G.
, and
Nguyen
,
L.
, 2005, “
Powercycling Reliability, Failure Analysis and Acceleration Factors of Pb-Free Solder Joints
,”
Proceedings of Electronic Components and Technology Conference
, pp.
907
915
.
28.
Towashiraporn
,
P.
,
Gall
,
K.
,
Subbarayan
,
G.
,
McIlvanie
,
B.
,
Hunter
,
B. C.
,
Love
,
D.
, and
Sullivan
,
B.
, 2004, “
Power Cycling Thermal Fatigue of Sn-Pb Solder Joints on a Chip Scale Package
,”
Int. J. Fatigue
0142-1123,
26
, pp.
497
510
.
29.
Schubert
,
A.
,
Dudek
,
R.
,
Auerswald
,
E.
,
Gollhardt
,
A.
,
Michel
,
B.
, and
Reichl
,
H.
, 2003, “
Fatigue Life Models for SnAgCu and SnPb Solder Joints Evaluated by Experiments and Simulation
,”
Proceedings of Electronic Components and Technology Conference
, pp.
603
610
.
30.
Darveaux
,
R.
,
Banerji
,
K.
,
Mawer
,
A.
, and
Doddy
,
G.
, 1995, in
Reliability of Plastic Ball Grid Array Assembly
,
J. H.
Lau
, ed.,
McGraw-Hill
,
New York
.
You do not currently have access to this content.