In an effort to increase processor speeds, 3D IC architecture is being aggressively pursued by researchers and chip manufacturers. This architecture allows extremely high level of integration with enhanced electrical performance and expanded functionality, and facilitates realization of VLSI and ULSI technologies. However, utilizing the third dimension to provide additional device layers poses thermal challenges due to the increased heat dissipation and complex electrical interconnects among different layers. The conflicting needs of the cooling system requiring larger flow passage dimensions to limit the pressure drop, and the IC architecture necessitating short interconnect distances to reduce signal latency warrant paradigm shifts in both of their design approach. Additional considerations include the effects due to temperature nonuniformity, localized hot spots, complex fluidic connections, and mechanical design. This paper reviews the advances in 3D IC cooling in the last decade and provides a vision for codesigning 3D IC architecture and integrated cooling systems. For heat fluxes of 50–100 W/cm2 on each side of a chip in a 3D IC package, the current single-phase cooling technology is projected to provide adequate cooling, albeit with high pressure drops. For future applications with coolant surface heat fluxes from 100 to 500 W/cm2, significant changes need to be made in both electrical and cooling technologies through a new level of codesign. Effectively mitigating the high temperatures surrounding local hot spots remains a challenging issue. The codesign approach with circuit, software and thermal designers working together is seen as essential. The through silicon vias (TSVs) in the current designs place a stringent limit on the channel height in the cooling layer. It is projected that integration of wireless network on chip architecture could alleviate these height restrictions since the data bandwidth is independent of the communication lengths. Microchannels that are 200 μm or larger in depth are expected to allow dissipation of large heat fluxes with significantly lower pressure drops.

References

1.
Kandlikar
,
S. G.
,
Kudithipudi
,
D.
, and
Rubio-Jimenez
,
C. A.
,
2011
, “
Cooling Mechanisms in 3D ICs: Thermo-Mechanical Perspective
,”
IEEE International Green Computing Conference and Workshops
(
IGCC
), Orlando, FL, July 25–28. 10.1109/IGCC.2011.6008573
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F.
,
1981
, “
High Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Lett.
,
2
(5), pp.
126
129
.10.1109/EDL.1981.25367
3.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
LaBianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R.
,
Bezama
,
R.
,
Marston
,
K.
, and
Schmidt
,
R.
,
2007
, “
High Performance and Subambient Silicon Microchannel Cooling
,”
ASME J. Heat Transfer
,
129
(8), pp.
1046
1051
.10.1115/1.2724850
4.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
Single-Phase Liquid Heat Transfer in Plain and Enhanced Microchannels
,”
ASME 4th International Conference on Nanochannels, Microchannels and Minichannels
,
Limerick, Ireland, June 19–21
,
ASME
Paper No. ICNMM2006-96227. 10.1115/ICNMM2006-96227
5.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray, and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
6.
Cotler
,
A. C.
,
Brown
,
E. R.
,
Dhir
,
V.
, and
Shaw
,
M. C.
,
2004
, “
Chip-Level Spray Cooling of an LD-MOSFET RF Power Amplifier
,”
IEEE Trans. Comp. Packag. Technol.
,
27
(
2
), pp.
411
416
.10.1109/TCAPT.2004.828550
7.
Chang
,
C. J.
,
Chen
,
H. T.
, and
Gau
,
C.
,
2013
, “
Flow and Heat Transfer of a Microjet Impinging on a Heated Chip: Part I—Micro Free and Impinging Jet
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
1
), pp.
50
68
.10.1080/15567265.2012.748110
8.
Chang
,
C. J.
,
Chen
,
H. T.
, and
Gau
,
C.
,
2013
, “
Flow and Heat Transfer of a Microjet Impinging on a Heated Chip: Part II—Heat Transfer
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
2
), pp.
92
111
.10.1080/15567265.2012.761304
9.
Kandlikar
,
S. G.
,
2012
, “
History, Advances, and Challenges in Liquid Flow and Flow Boiling Heat Transfer in Microchannels: A Critical Review
,”
ASME J. Heat Transfer
,
134
(
3
), p.
034001
.10.1115/1.4005126
10.
Kandlikar
,
S. G.
,
Colin
,
S.
,
Peles
,
Y.
,
Garimella
,
S.
,
Pease
,
R. F.
,
Brandner
,
J. J.
, and
Tuckerman
,
D. B.
, “
Heat Transfer in Microchannels—2012 Status and Research Needs
,”
ASME J. Heat Transfer
,
135
(9), p.
091001
.10.1115/1.4024354
11.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
,
1999
, “
Phase Change in Micro-Channel Heat Sinks With Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
,
8
(4), pp.
358
365
.10.1109/84.809049
12.
Koo
,
J.-M.
,
Jiang
,
L.
,
Zhang
,
L.
,
Zhou
,
P.
,
Banerjee
,
S. S.
,
Kenny
,
T. M.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2000
, “
Modeling of Two-Phase Microchannel Heat Sinks for VLSI Chips
,” 14th IEEE International Conference on Micro Electro Mechanical Systems (
MEMS 2001
), Interlaken, Switzerland, January 21–25, pp. 422–426.10.1109/MEMSYS.2001.906568
13.
Petti
,
C.
,
Herner
,
S. B.
, and
Walker
,
A.
, “
Monolithic 3D Integrated Circuits
,”
Wafer-Level 3D ICs Process Technology
, Springer, New York, Chap. 2. 10.1007/978-0-387-76534-1_2
14.
Pavlidis
,
V. F.
, and
Friedman
,
E. G.
,
2007
, “
3-D Topologies for Network-on-Chips
,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems
,
15
(
10
), pp.
1081
1090
.10.1109/TVLSI.2007.893649
15.
Wong
,
S.
,
El-Gamal
,
A.
,
Griffin
,
P.
,
Nishio
,
Y.
,
Pease
,
F.
, and
Plummer
,
J.
,
2007
, “
Monolithic 3D Integrated Circuits
,”
International Symposium on VLSI Technology, Systems and Applications
(
VLSI-TSA 2007
), Hsinchu, Taiwan, April 23–25. 10.1109/VTSA.2007.378923
16.
Lee
,
K. F.
,
Gibbons
,
J. F.
, and
Saraswat
,
K. C.
,
1979
, “
Thin Film MOSFETs Fabricated in Laser-Annealed Polycrystalline Silicon
,”
Appl. Phys. Lett.
,
35
(2), pp.
173
175
.10.1063/1.91025
17.
Geis
,
M. W.
,
Flanders
,
D. C.
,
Antoniadis
,
D. A.
, and
Smith
,
H. I.
,
1979
, “
Crystalline Silicon on Insulators by Graphoepitaxy
,”
IEDM Technical Digest, IEEE
, pp.
210
212
.
18.
Akiyana
,
S.
,
Ogawa
,
S.
,
Yoneda
,
M.
,
Yosii
,
N.
, and
Terui
,
Y.
,
1983
, “
Multilayer CMOS Device Fabricated on Laser Recrystallized Silicon Islands
,”
1983 International Electron Devices Meeting
, Washington, DC, December, 5–7, Vol. 29, pp.
352
355
.10.1109/IEDM.1983.190514
19.
Kunio
,
T.
,
Oyama
,
K.
,
Hayashi
,
Y.
, and
Morimoto
,
M.
,
1989
, “
Three Dimensional ICs, Having Four Stacked Active Device Layers
,” International Electron Devices Meeting (
IEDM '89
), Washington, DC, December 3–6, pp.
837
890
.10.1109/IEDM.1989.74183
20.
Topol
,
A. W.
,
LaTulipe
,
D. C.
,
Shi
,
L.
,
Frank
,
D. J.
,
Bernstein
,
K.
,
Steen
,
S. E.
,
Kumar
,
A.
,
Singco
,
G. U.
,
Young
,
A. M.
,
Guanini
,
K. W.
, and
Ieong
,
M.
,
2006
, “
Three-Dimensional Integrated Circuits
,”
IBM J. Res. Develop.
,
56
(
4/5
), pp.
491
506
.10.1147/rd.504.0491
21.
Lee
,
S. B.
,
Tam
,
S
-W.
,
Pefkianakis
,
I.
,
Lu
,
S.
,
Chang
,
F.
,
Guo
,
C.
, and
Reinman
,
G.
,
Peng
,
C.
,
Naik
,
M.
,
Zhang
,
L.
,
Cong
,
J.
,
2009
, “
A Scalable Micro Wireless Interconnect Structure for CMPs
”,
ACM 15th Annual International Conference on Mobile Computing and Networking
(
MobiCom '09
), Beijing, September 20–25, pp.
217
228
.10.1145/1614320.1614345
22.
Shacham
,
A.
,
Bergmen
,
K.
, and
Carloni
,
L. P.
,
2008
, “
Photonic Network-on-Chip for Future Generations of Chip Multi-Processors
,”
IEEE Trans. Comput.
,
57
(
9
), pp.
1246
1260
.10.1109/TC.2008.78
23.
Davis
,
W. R.
,
Wilson
,
J.
,
Mick
,
S.
,
Xu
,
J.
,
Hua
,
H.
,
Mineo
,
C.
,
Sule
,
A. M.
,
Steer
,
M.
, and
Franzon
,
P. D.
,
2005
, “
Demystifying 3D ICs: The Pros and Cons of Going Vertical
,”
IEEE Des. Test Comput.
,
22
(
6
), pp.
498
510
.10.1109/MDT.2005.136
24.
Koo
,
J.-M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architecture
,”
ASME J. Heat Transfer
,
127
(1), pp.
49
58
.10.1115/1.1839582
25.
Lu
,
J.-Q.
,
Devarajan
,
S.
,
Zeng
,
A. Y.
,
Rose
,
K.
, and
Gutmann
,
R. J.
,
2005
, “
Die-on-Wafer and Wafer-Level Three-Dimensional (3D) Integration of Heterogeneous IC Technologies for RF-Microwave-Millimeter Applications
,”
MRS Proceedings
,
833
, p. G6.8. 10.1557/PROC-833-G6.8
26.
Pande
,
P. P.
,
Ganguly
,
A.
,
Belzar
,
B.
,
Nojeh
,
A.
, and
Ivanov
,
A.
,
2008
, “
Novel Interconnect Infrastructures for Massive Multicore Chips—An Overview
,”
IEEE International Symposium on Circuits and Systems
(
ISCAS 2008
), Seattle, WA, May 18–21, pp.
2777
2780
.10.1109/ISCAS.2008.4542033
27.
Bakir
,
M. S.
,
Sekar
,
D.
,
Thacker
,
H.
, and
Dang
,
B.
,
2008
, “
3D Heterogeneous Integrated Systems: Liquid Cooling, Power Delivery, and Implementation
,”
IEEE Custom Integrated Circuits Conference
(
CICC 2008
),
San Jose
, CA, September 21–24, pp.
663
670
.10.1109/CICC.2008.4672173
28.
Kandlikar
,
S. G.
,
2002
, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
389
407
.10.1016/S0894-1777(02)00150-4
29.
Sekar
,
D. C.
,
King
,
C.
,
Dang
,
B.
,
Thacker
,
H.
,
Joseph
,
P.
,
Bakir
,
M.
, and
Meindl
,
J.
,
2008
, “
A 3D-IC Technology With Integrated Microchannel Cooling
,”
IEEE International Interconnect Technology Conference
(
IITC 2008
),
Burlingame, CA
, June 1–4, pp.
13
15
.10.1109/IITC.2008.4546911
30.
Dang
,
B.
,
Bakir
,
M. S.
,
Sekar
,
D. C.
,
King
,
C. R.
, Jr.
, and
Meindl
,
J. D.
,
2010
, “
Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips
,”
IEEE Trans. Adv. Packag.
,
33
(
1
), pp.
79
87
.10.1109/TADVP.2009.2035999
31.
Alfieri
,
F.
,
Tiwari
,
M. K.
,
Zinovik
,
I.
,
Poulikakos
,
D.
,
Brunschwiler
,
T.
, and
Michel
,
B.
,
2010
, “
3D Integrated Water Cooling of a Composite Multilayer Stack of Chips
,”
ASME J. Heat Transfer
,
132
(
12
), p.
121402
.10.1115/1.4002287
32.
Zhang
,
Y.
,
King
,
C. R.
,
Zaveri
,
J.
,
Yoon
,
J.
,
Sahu
,
V.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2011
, “
Coupled Electrical and Thermal 3D IC Centric Microfluidic Heat Sink Design and Technology
,”
61st IEEE Electronic Components and Technology
Conference (
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
2037
2044
.10.1109/ECTC.2011.5898797
33.
Zhang
,
Y.
,
Dembla
,
A.
,
Joshi
,
Y.
, and
Bakir
,
M. S.
,
2012
, “
3D Stacked Microfluidic Cooling for High-Performance 3D ICs
,”
62nd IEEE Electronic Components and Technology Conference
(
ECTC
),
San Diego
, CA, May 29–June 1, pp.
1644
1650
.10.1109/ECTC.2012.6249058
34.
Zhang
,
Y.
, and
Bakir
,
M. S.
,
2013
, “
Independent Interlayer Microfluidic Cooling for Heterogeneous 3D IC Applications
,”
Electron. Lett.
,
49
(
6
), pp.
404
406
.10.1049/el.2012.3313
35.
Lau
,
J. H.
, and
Yue
,
T. G.
,
2009
, “
Thermal Management of 3D IC Integration With TSV (Through Silicon Via)
,”
59th IEEE Electronic Components and Technology Conference
(
ECTC 2009
), San Diego, CA, May 26–29, pp.
635
640
.10.1109/ECTC.2009.5074080
36.
Ziabari
,
A.
, and
Shakouri
,
A.
,
2012
, “
Fast Thermal Simulations of Vertically Integrated Circuits (3D ICs) Including Thermal Vias
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITherm
), San Diego, CA, May 30–June 1, pp.
588
596
.10.1109/ITHERM.2012.6231482
37.
Shi
,
B.
,
Srivastava
,
A.
, and
Bar-Cohen
,
A.
,
2012
, “
Hybrid 3D-IC Cooling System Using Micro-Fluidic Cooling and Thermal TSVs
,”
IEEE Computer Society Annual Symposium on VLSI
(
ISVLSI
), Amherst, MA, August 19–21, pp.
33
38
.10.1109/ISVLSI.2012.29
38.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2010
, “
Compact Transient Thermal Modeling for 3D ICs With Liquid Cooling Via Enhanced Heat Transfer Cavity Geometries
,”
16th International Workshop on Thermal Investigations of ICs and Systems (THERMINIC), Barcelona, Spain, October
, 6–8.
39.
Sridhar
,
A.
,
Vincenzi
,
A.
,
Ruggiero
,
M.
,
Brunschwiler
,
T.
, and
Atienza
,
D.
,
2010
, “
3D-ICE: Fast Compact Transient Thermal Modeling for 3D ICs With Inter-Tier Liquid Cooling
,”
Proceedings of the International Conference on Computer-Aided Design
, pp.
463
470
.
40.
Feng
,
Z.
, and
Li
,
P.
,
2010
, “
Fast Thermal Analysis on GPU for 3D-ICs With Integrated Microchannel Cooling
,”
IEEE/ACM International Conference
on Computer-Aided Design (
ICCAD
), San Jose, CA, November 7–11, pp.
551
555
.10.1109/ICCAD.2010.5653869
41.
Wilkerson
,
P.
,
Raman
,
A.
, and
Turowski
,
M.
,
2004
, “
Fast, Automated Thermal Simulations of Three-Dimensional Integrated Circuits
,”
9th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM '04
), Las Vegas, NV, June 1–4, pp.
706
713
.10.1109/ITHERM.2004.1319245
42.
Koo
,
J.-M.
,
Jiang
,
L.
,
Zeng
,
L.
,
Zhou
,
P.
,
Banerjee
,
S. S.
,
Kenny
,
T. W.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
,
2001
, “
Modeling of Two-Phase Microchannel Heat Sinks for VLSI Chips
,”
14th IEEE International Conference on Micro Electro Mechanical Systems
(
MEMS 2001
), Interlaken, Switzerland, January 21–25, pp.
422
426
.10.1109/MEMSYS.2001.906568
43.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
44.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
,
2006
, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
,
128
(4), pp.
389
396
.10.1115/1.2165208
45.
Zhang
,
T.
,
Peles
,
Y.
,
Wen
,
J. T.
,
Tong
,
T.
,
Chang
,
J.-Y.
,
Prasher
,
R.
, and
Jensen
,
M. K.
, 2010, “
Analysis and Active Control of Pressure-Drop Flow Instabilities in Boiling Microchannel Systems
,”
Int. J. Heat Mass Transfer
,
53
(11–12), pp.
2347
2360
.10.1016/j.ijheatmasstransfer.2010.02.005
46.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(21–22), pp.
5204
5212
.10.1016/j.ijheatmasstransfer.2009.04.025
47.
Szczukiewicz
,
S.
,
Borhani
,
N.
, and
Thome
,
J. R.
,
2013
, “
Two-Phase Heat Transfer and High-Speed Visualization of Refrigerant Flows in 100 × 100 μm2 Silicon Microchannels
,”
Int. J. Refrig.
,
36
(2), pp.
402
413
.10.1016/j.ijrefrig.2012.11.014
48.
DARPA
,
2013
, “
ICECool Applications,” Microsystems Technology Office
, Defense Advanced Research Projects Agency, Arlington, VA, Solicitation Number DARPA-BAA-13-21, February 6.
49.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2005
, “
Numerical Study of the Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
ASME
Paper No. ICMM2005-75143. 10.1115/ICMM2005-75143
50.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
,
2009
, “
The Effect of Inlet Constriction on Bubble Growth During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5204
5212
.10.1016/j.ijheatmasstransfer.2009.04.025
51.
Lu
,
C. T.
, and
Pan
,
C.
,
2009
, “
A Highly Stable Microchannel Heat Sink for Convective Boiling
,”
J. Micromech. Microeng.
,
19
(
5
), p.
055013
.10.1088/0960-1317/19/5/055013
52.
Miner
,
M. J.
,
Phelan
,
P. E.
,
Odom
,
B. A.
,
Ortiz
,
C. A.
,
Prasher
,
R. S.
, and
Sherbeck
,
J. A.
,
2013
, “
Optimized Expanding Microchannel Geometry for Flow Boiling
,”
ASME J. Heat Transfer
,
135
(4), p.
042901
.10.1115/1.4023260
53.
Kandlikar
,
S. G.
,
Widger
,
T.
,
Kalani
,
A.
, and
Mejia
,
V.
,
2013
, “
Enhanced Flow Boiling Over Open Microchannels With Uniform and Tapered Gap Manifolds
,”
ASME J. Heat Transfer
,
135
(6), p.
061401
.10.1115/1.4023574
54.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S. G.
,
2012
, “
Fabrication of Nanowires on Orthogonal Surfaces of Microchannels and Their Effect on Pool Boiling
,”
J. Micromech. Microeng.
,
22
(11), p.
115005
.10.1088/0960-1317/22/11/115005
55.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (I): Characterization of Flow Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
68
, pp.
703
715
.10.1016/j.ijheatmasstransfer.2013.09.058
56.
Yang
,
F.
,
Dai
,
X.
,
Peles
,
Y.
,
Cheng
,
P.
,
Khan
,
J.
, and
Li
,
C.
,
2014
, “
Flow Boiling Phenomena in a Single Annular Flow Regime in Microchannels (II): Reduced Pressure Drop and Enhanced Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
68
, pp.
716
724
.10.1016/j.ijheatmasstransfer.2013.09.060
57.
Mizunuma
,
H.
,
Yang
,
C.-L.
, and
Lu
,
Y.-C.
,
2009
, “
Thermal Modeling for 3D-ICs With Integrated Microchannel Cooling
,”
IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2009), San Jose, CA, November 2–5
, pp.
256
263
.
58.
Kearney
,
D.
,
Hilt
,
T.
, and
Pham
,
P.
,
2012
, “
A Liquid Cooling Solution for Temperature Redistribution in 3D IC Architectures
,”
Microelectron. J.
,
43
(9), pp.
602
610
.10.1016/j.mejo.2011.03.012
59.
Zhang
,
J.
,
Bloom field
,
M. O.
,
Lu
,
J.-Q.
,
Gutmann
,
R. J.
, and
Cale
,
T. S.
,
2005
, “
Thermal Stresses in 3D IC Inter-Wafer Interconnects
,”
Microelectron. Eng.
,
82
(3–4), pp.
534
547
.10.1016/j.mee.2005.07.053
60.
Tu
,
K. N.
,
2011
, “
Reliability Challenges in 3D IC Packaging Technology
,”
Microelectronics Reliability
,
51
(3), pp.
517
523
.10.1016/j.microrel.2010.09.031
61.
Tilley
,
B. S.
,
2013
, “
On Microchannel Shapes in Liquid-Cooled Electronics Applications
,”
Int. J. Heat Mass Transfer
,
62
, pp.
163
173
.10.1016/j.ijheatmasstransfer.2013.02.035
62.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density
,”
IEEE Trans. Compon., Packag. Manuf.
,
2
(
5
), pp.
825
833
.10.1109/TCPMT.2012.2189925
63.
Rubio-Jimenez
,
C. A.
,
Kandlikar
,
S. G.
, and
Hernandez-Guerrero
,
A.
,
2012
, “
Performance of Online and Offset Micro Pin-Fin Heat Sinks With Variable Fin Density
,”
IEEE Trans. Compon., Packag. Manuf.
,
3
(
1
), pp.
86
93
.10.1109/TCPMT.2012.2225143
64.
Lorenzini-Gutierrez
,
D.
, and
Kandlikar
,
S. G.
, “
Numerical Simulation and Design of a Variable Density Flow Passage for Effective Cooling of a 3D IC Chip
,”
ASME J. Electron. Packag.
,
136
(2), p. XXX.10.1115/1.4027091
65.
Ramm
,
P.
,
Klumpp
,
A.
, and
Weber
,
J.
,
2008
, “
3D Integration Technologies for MEMS/IC Systems
,”
IEEE Bipolar/BiCMOS Circuits and Technology Meeting
(
BCTM 2009
), Capri, Italy, October 12–14, pp.
138
141
.10.1109/BIPOL.2009.5314117
66.
Ramm
,
P.
, and
Klumpp
,
A.
,
2008
, “
Through-Silicon Via Technologies for Extreme Miniaturized 3D Integrated Wireless Sensor Systems (e-CUBES)
,”
IEEE International Interconnect Technology Conference
(
IITC 2008
), Burlingame, CA, June 1–4, pp.
7
9
.10.1109/IITC.2008.4546909
67.
Taklo
,
M. M. V.
,
Lietaer
,
N.
,
Tofteberg
,
H. R.
,
Seppanen
,
T.
,
Prainsack
,
J.
,
Weber
,
J.
, and
Ramm
,
P.
,
2009
, “
3D MEMS and IC Integration
,”
Materials Research Society Proceedings
,
1112
, pp.
211
220
.
68.
Gagnard
,
X.
, and
Mourier
,
T.
,
2010
, “
Through Silicon Via: From the CMOS Imager Sensor Wafer Level Package to the 3D Integration
,”
Microelectron. Eng.
,
87
(3), pp.
470
476
.10.1016/j.mee.2009.05.035
69.
Xu
,
G.
,
Huang
,
Q.
,
Ning
,
W.
,
Ruan
,
Z.
, and
Luo
,
L.
,
2009
, “
A Novel MEMS Package With Three-Dimensional Stacked Modules
,”
International Conference on Electronic Packaging Technology & High Density Packaging
(
ICEPT-HDP'09
), Beijing, August 10–13, pp.
77
80
.10.1109/ICEPT.2009.5270789
70.
Floyd
,
B. A.
,
Hung
,
C.-M.
, and
O
,
K. K.
,
2002
, “
Intra-Chip Wireless Interconnect for Clock Distribution Implemented With Integrated Antennas, Receivers, and Transmitters
,”
IEEE J. Solid-State Circuits
,
37
(
5
), pp.
543
552
.10.1109/4.997846
71.
Ganguly
,
A.
,
Chang
,
K.
,
Deb
,
S.
,
Pande
,
P. P.
,
Belzer
,
B.
, and
Teuscher
,
C.
,
2011
, “
Scalable Hybrid Wireless Network-on-Chip Architectures for Multicore Systems
,”
IEEE Trans. Comput.
,
60
(
10
), pp.
1485
1502
.10.1109/TC.2010.176
72.
Zhao
,
D.
, and
Wang
,
Y.
,
2008
, “
SD-MAC: Design and Synthesis of a Hardware-Efficient Collision-Free QoS-Aware MAC Protocol for Wireless Network-on-Chip
,”
IEEE Trans. Comput.
,
57
(
9
), pp.
1230
1245
.10.1109/TC.2008.86
73.
More
,
A.
, and
Taskin
,
B.
,
2011
, “
EM and Circuit Co-Simulation of a Reconfigurable Hybrid Wireless NoC on 2D ICs
,”
Proceedings of the IEEE 29th International Conference on Computer Design
(
ICCD
), Amherst, MA, October 9–12, pp.
19
24
.10.1109/ICCD.2011.6081370
74.
More
,
A.
, and
Taskin
,
B.
,
2010
, “
Wireless Interconnects for Inter-Tier Communication on 3D ICs
,”
European Microwave Circuits Conference (EuMC)
, Paris, September 28–30, pp.
105
108
.
75.
More
,
A.
, and
Taskin
,
B.
,
2010
, “
Simulation Based Study of On-Chip Antennas for a Reconfigurable Hybrid 3D Wireless NoC
,”
IEEE International SOC Conference
(
SOCC
), Las Vegas, NV, September 27–29, pp.
447
452
.10.1109/SOCC.2010.5784673
76.
Lin
,
T-.Y.
, and
Kandlikar
,
S. G.
,
2012
, “
An Experimental Investigation of Structured Roughness Effect on Heat Transfer During Single-Phase Liquid Flow at Microscale
,”
ASME J. Heat Transfer
,
134
(
10
), p.
101701
.10.1115/1.4006844
77.
Li
,
Z.
,
Hong
,
X.
,
Zhou
,
Q.
,
Bian
,
J.
,
Yang
,
H.
, and
Pitchumani
,
2006
, “
Efficient Thermal-Oriented 3D Floor-Planning and Thermal Via Planning for Two-Stacked-Die Integration
,”
ACM Trans. Des. Autom. Electron. Syst.
,”
11
(
2
), pp.
325
345
.10.1145/1142155.1142159
78.
Kudithipudi
,
D.
,
Coskun
,
A.
,
Reda
,
S.
, and
Qiu
,
Q.
,
2012
, “
Temperature-Aware Computing: Achievements and Remaining Challenges
,”
IEEE 3rd International Green Computing Conference
(
IGCC
),
San Jose
, CA, June 4–8, pp.
1
3
.10.1109/IGCC.2012.6322291
79.
Mohanram
,
S.
,
Brenner
,
D.
, and
Kudithipudi
,
D.
,
2013
, “
Hierarchical Optimization of TSV Placement With Inter-Tier Liquid Cooling in 3D-IC MPSoCs
,”
29th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, March 7–12, pp.
17
21
.10.1109/SEMI-THERM.2013.6526798
80.
Kalani
,
A.
, and
Kandlikar
,
S. G.
,
2013
, “
Experimental Investigation of Flow Boiling Performance of Open Microchannels With Uniform and Tapered Manifolds (OMM)
,”
ASME
Paper No. HT2013-17441.10.1115/HT2013-17441
81.
Garrou
,
P.
,
2011
, “
IBM to Use Water Cooling for Future 3D IC Processors
,”
Solid State Technol.
,
54
(
5
), pp.
9
.
You do not currently have access to this content.