Abstract

Low temperature soldering has been realized to create a strong metallurgical interconnection between Cu using the self-propagating exothermic reaction by Al–Ni NanoFoil. This technique presents a great potential for electronics integration with a significantly reduced processing temperature (at least 150 °C lower than traditional techniques) and minimal thermal effects to the components. In this study, finite element analysis was performed to predict the temperature profiles across bonding interfaces, which were subsequently correlated with the formation and quality of the bonded structures. It has been revealed that, for nonequilibrium nanosized phases and defects, their formation and distribution were primarily attributed to the solid–liquid interdiffusion and rapid solidification, under the highly transient regime due to a drastic heating/cooling (105–107  °C/s). The preheating and pressure applied to the bonding structure were clearly beneficial to improve the quality of bonding. This was achieved by the thinned solder thickness and the correspondingly improved temperature profiles that enable a sufficient wetting, filling, and interfacial reactions. Through the comparative analysis of the numerical predictions and the experimental results, the solder layers must completely melt across their thickness and have a total heat over 30 K ms on the Cu to ensure robust interconnections with a shear strength of approximately 37 ± 3 MPa and dense continuous bonding interfaces.

References

1.
Ramm
,
P.
,
Klumpp
,
A.
,
Weber
,
J.
,
Lietaer
,
N.
,
Taklo
,
M.
,
De Raedt
,
W.
,
Fritzsch
,
T.
, and
Couderc
,
P.
,
2010
, “
3D Integration Technology: Status and Application Development
,”
ESSCIRC
,
Seville, Spain
, Sept. 14–16, pp.
9
16
.10.1109/ESSCIRC.2010.5619857
2.
Matsuda
,
T.
,
Takahashi
,
M.
,
Sano
,
T.
, and
Hirose
,
A.
,
2017
, “
Multiple Self-Exothermic Reactions for Room-Temperature Aluminum Bonding Via Instantaneous Melting
,”
Mater. Des.
,
121
, pp.
136
142
.10.1016/j.matdes.2017.02.045
3.
Braeuer
,
J.
,
Besser
,
J.
,
Wiemer
,
M.
, and
Gessner
,
T.
,
2012
, “
A Novel Technique for MEMS Packaging: Reactive Bonding With Integrated Material Systems
,”
Sens. Actuators A: Phys.
,
188
, pp.
212
219
.10.1016/j.sna.2012.01.015
4.
Boettge
,
B.
,
Braeuer
,
J.
,
Wiemer
,
M.
,
Petzold
,
M.
,
Bagdahn
,
J.
, and
Gessner
,
T.
,
2010
, “
Fabrication and Characterization of Reactive Nanoscale Multilayer Systems for Low-Temperature Bonding in Microsystem Technology
,”
J. Micromech. Microeng.
,
20
(
6
), p.
064018
.10.1088/0960-1317/20/6/064018
5.
Jensen
,
T.
,
2019
, “
NanoFoil Properties
,” Indium Corporation, Utica, NY, accessed June 24, https://www.indium.com/products/nanofoil/#documents
6.
Wang
,
Y.
,
Liu
,
Z.-K.
, and
Chen
,
L.-Q.
,
2004
, “
Thermodynamic Properties of Al, Ni, NiAl, and Ni3Al From First-Principles Calculations
,”
Acta Mater.
,
52
(
9
), pp.
2665
2671
.10.1016/j.actamat.2004.02.014
7.
Kremer
,
M. P.
,
Roshanghias
,
A.
, and
Tortschanoff
,
A.
,
2017
, “
Self-Propagating Reactive Al/Ni Nanocomposites for Bonding Applications
,”
Micro Nano Syst. Lett.
,
5
(
1
), p.
12
.10.1186/s40486-017-0046-x
8.
Fiedler
,
T.
,
Belova
,
I. V.
,
Broxtermann
,
S.
, and
Murch
,
G. E.
,
2012
, “
A Thermal Analysis on Self-Propagating High Temperature Synthesis in Joining Technology
,”
Comput. Mater. Sci.
,
53
(
1
), pp.
251
257
.10.1016/j.commatsci.2011.08.015
9.
Motiei
,
L.
,
Yao
,
Y.
,
Choudhury
,
J.
,
Yan
,
H.
,
Marks
,
T. J.
,
Boom
,
M. E. V. D.
, and
Facchetti
,
A.
,
2010
, “
Self-Propagating Molecular Assemblies as Interlayers for Efficient Inverted Bulk-Heterojunction Solar Cells
,”
J. Am. Chem. Soc.
,
132
(
36
), pp.
12528
12530
.10.1021/ja104695p
10.
Qiu
,
X.
, and
Wang
,
J.
,
2008
, “
Bonding Silicon Wafers With Reactive Multilayer Foils
,”
Sens. Actuators A Phys.
,
141
, pp.
476
481
.10.1016/j.sna.2007.10.039
11.
Wang
,
J.
,
Besnoin
,
E.
,
Duckham
,
A.
,
Spey
,
S. J.
,
Reiss
,
M. E.
,
Knio
,
O. M.
, and
Weihs
,
T. P.
,
2004
, “
Joining of Stainless-Steel Specimens With Nanostructured Al/Ni Foils
,”
J. Appl. Phys.
,
95
(
1
), pp.
248
256
.10.1063/1.1629390
12.
Shang
,
S.
,
Kunwar
,
A.
,
Wang
,
Y.
,
Yao
,
J.
,
Wu
,
Y.
,
Ma
,
H.
, and
Wang
,
Y.
,
2019
, “
Geometrical Effects of Cu@Ag Core-Shell Nanoparticles Treated Flux on the Growth Behaviour of Intermetallics in Sn/Cu Solder Joints
,”
Electron. Mater. Lett.
,
15
(
2
), pp.
253
265
.10.1007/s13391-018-00116-5
13.
Gancarz
,
T.
,
Moser
,
Z.
,
Gasior
,
W.
,
Pstruś
,
J.
, and
Henein
,
H.
,
2011
, “
A Comparison of Surface Tension, Viscosity, and Density of Sn and Sn–Ag Alloys Using Different Measurement Techniques
,”
Int. J. Thermophys.
,
32
(
6
), pp.
1210
1233
.10.1007/s10765-011-1011-1
14.
COMSOL
,
2019
, “
Heat Transfer Module
,” COMSOL,
Stockholm, Sweden
, accessed June 24, https://www.comsol.com/heat-transfer-module
15.
Li
,
D.
,
Franke
,
P.
,
Fürtauer
,
S.
,
Cupid
,
D.
, and
Flandorfer
,
H.
,
2013
, “
The Cu–Sn Phase Diagram—Part II: New Thermodynamic Assessment
,”
Intermetallics
,
34
, pp.
148
158
.10.1016/j.intermet.2012.10.010
16.
Chevalier
,
P. Y.
,
1988
, “
A Thermodynamic Evaluation of the Ag-Sn System
,”
Thermochim. Acta
,
136
(
130
), pp.
45
54
.10.1016/0040-6031(88)87426-4
17.
Zhu
,
W.
,
Wu
,
F.
,
Wang
,
B.
,
Hou
,
E.
,
Wang
,
P.
,
Liu
,
C.
, and
Xia
,
W.
,
2014
, “
Microstructural and Mechanical Integrity of Cu/Cu Interconnects Formed by Self-Propagating Exothermic Reaction Methods
,”
Microelectron. Eng.
,
128
, pp.
24
30
.10.1016/j.mee.2014.05.035
You do not currently have access to this content.