Abstract

High performance and economically viable cooling solutions must be developed to reduce weight and volume, allowing for a wide-spread utilization of hybrid electric vehicles. The traditional embedded microchannel cooling heat sinks suffer from high pressure drop due to small channel dimensions and long flow paths in two-dimensional (2D) plane. Utilizing direct “embedded cooling” strategy in combination with top access three-dimensional (3D) manifold strategy reduces the pressure drop by nearly an order of magnitude. In addition, it provides more temperature uniformity across large area chips and it is less prone to flow instability in two-phase boiling heat transfer. This study presents the experimental results for single-phase thermofluidic performance of an embedded silicon microchannel cold plate (CP) bonded to a 3D manifold for heat fluxes up to 300 W/cm2 using single-phase R-245fa. The heat exchanger consists of a 5 × 5 mm2 heated area with 25 parallel 75 × 150 μm2 microchannels, where the fluid is distributed by a 3D-manifold with four microconduits of 700 × 250 μm2. Heat is applied to the silicon heat sink using electrical Joule-heating in a metal serpentine bridge and the heated surface temperature is monitored in real-time by infrared (IR) camera and electrical resistance thermometry. The maximum and average temperatures of the chip, pressure drop, thermal resistance, and average heat transfer coefficient (HTC) are reported for flow rates of 0.1, 0.2. 0.3, and 0.37 L/min and heat fluxes from 25 to 300 W/cm2. The proposed embedded microchannels-3D manifold cooler, or EMMC, device is capable of removing 300 W/cm2 at maximum temperature 80 °C with pressure drop of less than 30 kPa, where the flow rate, inlet temperature, and pressures are 0.37 L/min, 25 °C and 350 kPa, respectively. The experimental uncertainties of the test results are estimated, and the uncertainties are the highest for heat fluxes < 50 W/cm2 due to difficulty in precisely measuring the fluid temperature at the inlet and outlet of the microcooler.

References

References
1.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
2.
Drummond
,
K. P.
,
Weibel
,
J. A.
,
Garimella
,
S. V.
,
Back
,
D.
,
Janes
,
D. B.
,
Sinanis
,
M. D.
, and
Peroulis
,
D.
,
2016
, “
Evaporative Intrachip Hotspot Cooling With a Hierarchical Manifold Microchannel Heat Sink Array
,” Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3,
pp.
307
315
.10.1109/ITHERM.2016.7517565
3.
Drummond
,
K. P.
,
Back
,
D.
,
Sinanis
,
M. D.
,
Janes
,
D. B.
,
Peroulis
,
D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2018
, “
Characterization of Hierarchical Manifold Microchannel Heat Sink Arrays Under Simultaneous Background and Hotspot Heating Conditions
,”
Int. J. Heat Mass Transfer
,
126
, pp.
1289
1301
.10.1016/j.ijheatmasstransfer.2018.05.127
4.
Cetegen
,
E.
,
2010
,
Force Fed Microchannel High Heat Flux Cooling Utilizing Microgrooved Surfaces
, Ph.D. University
of Maryland
,
College Park, MD
.
5.
Goodson
,
K. E.
,
Chen
,
C. H.
,
Huber
,
D. E.
,
Jiang
,
L.
,
Kenny
,
T. W.
,
Koo
,
J.-M.
,
Laser
,
D. J.
,
Mikkelsen
,
J. C.
,
Santiago
,
J. G.
,
Wang
,
E. N.-Y.
,
Zeng
,
S.
, and
Zhang
,
L.
,
2005
, “
Electroosmotic Microchannel Cooling System
,” US Patent No.
6,942,018
.https://patents.google.com/patent/US6942018B2/en
6.
Goodson
,
K. E.
,
Kenny
,
T. W.
,
Zhou
,
P.
,
Upadhya
,
G.
,
Munch
,
M.
,
McMaster
,
M.
, and
Hom
,
J.
,
2006
, “
Method and Apparatus for Achieving Temperature Uniformity and Hot Spot Cooling in a Heat Producing Device
,” US Patent No.
7,104,312
.http://www.freepatentsonline.com/7104312.html
7.
Jung
,
K. W.
,
Harza
,
S.
,
Kwon
,
H.
,
Piazza
,
A.
,
Jih
,
E.
,
Asheghi
,
M.
,
Gupta
,
M. P.
,
Degner
,
M.
, and
Goodson
,
K. E.
,
2019
, “
Design Optimization of Silicon-Based Embedded Microchannels and 3D-Manifold for High Heat Flux (>1 kW/cm2) Power Electronics Cooling
,”
ASME
Paper No. IPACK2019-6400.10.1115/IPACK2019-6400
8.
Zhou
,
F.
,
Joshi
,
S. N.
,
Liu
,
Y.
, and
Dede
,
E. M.
,
2019
, “
Near-Junction Cooling for Next-Generation Power Electronics
,”
Int. Commun. Heat Mass
,
108
, p.
104300
.10.1016/j.icheatmasstransfer.2019.104300
9.
Jung
,
K. W.
,
Kharangate
,
C. R.
,
Lee
,
H.
,
Palko
,
J.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2019
, “
Embedded Cooling With 3D Manifold for Vehicle Power Electronics Applications: Single-Phase Thermal-Fluid Performance
,”
Int. J. Heat Mass Transfer
,
130
, pp.
1108
1119
.10.1016/j.ijheatmasstransfer.2018.10.108
10.
Incropera
,
F. P.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
11.
Jung
,
K. W.
,
Hazra
,
S.
,
Kwon
,
H.
,
Piazza
,
A.
,
Jih
,
E.
,
Asheghi
,
M.
,
Gupta
,
M. P.
,
Degner
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs)—Part 2: Parametric Study of EMMCs for High Heat Flux (∼1 kW/cm2) Power Electronics Cooling
,”
ASME J. Electron. Packag.
, Epub.10.1115/1.4047883
12.
Hazra
,
S.
,
Jung
,
K. W.
,
Iyengar
,
M.
,
Malone
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs)—Part 3: Addressing Challenges in Laser Micro-Machining Based Manufacturing of 3D-Manifolded Micro-Cooler Devices
,”
ASME J. Electron. Packag.
, Epub.10.1115/1.4047847
13.
Belser
,
R. B.
, and
Hicklin
,
W. H.
,
1959
, “
Temperature Coefficients of Resistance of Metallic Films in the Temperature Range 25 to 600 C
,”
J. Appl. Phys.
,
30
(
3
), pp.
313
322
.10.1063/1.1735158
14.
Liu
,
D.
,
Lee
,
P.-S.
, and
Garimella
,
S. V.
,
2005
, “
Prediction of the Onset of Nucleate Boiling in Microchannel Flow
,”
Int. J. Heat Mass Transfer
,
48
(
25–26
), pp.
5134
5149
.10.1016/j.ijheatmasstransfer.2005.07.021
15.
Mott
,
R. L.
, and
Untener
,
J. A.
,
2014
,
Applied Fluid Mechanics
, 7th ed.,
Pearson Education
, New York.
16.
Cengel
,
Y. A.
, and
Cimbala
,
J. H.
,
2006
,
Fluid Mechanics
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.