Abstract

Fatigue life prediction of electronic devices is of great importance in both research and industry. Traditionally, fatigue tests and finite element modeling (FEM) are the two main methods. This paper presents a new hybrid approach (FEM combined with artificial neural network, (ANN)) for fatigue life prediction. Finite element models on wafer-level chip scale packages (WLCSP) with different chip thickness, PCB thickness, and solder joint pitches were created to evaluate the effect of structure parameters on the increase in maximum creep strain under thermal fatigue load. Modified Coffin–Manson equation was then employed to estimate the corresponding fatigue life. ANNs were built, and then trained, tested, and optimized with the datasets from modeling to predict increase in maximum creep strain and fatigue life. For the ANN built for strain prediction, prediction accuracy of the optimal network was 97% in accuracy tests and 93% in generalization tests. Accuracy of the other ANN for predicting fatigue life was 94.2% in accuracy tests and 88% in generalization tests. This hybrid method shows very promising application in fatigue life estimation of electronic devices which requires much less time and lower cost.

References

1.
Rzepka
,
S.
,
Hofer
,
E.
,
Simon
,
J.
,
Meusel
,
E.
, and
Reichl
,
H.
,
2001
, “
Stress Analysis and Design Optimization of a Wafer-Level CSP by FEM Simulations and Experiments
,”
Proceedings of the 51st Electronic Components and Technology Conference
, Orlando, FL, May 29–June 1, pp.
704
714
.10.1109/ECTC.2001.927810
2.
Zhang
,
X.
,
Kripesh
,
V.
,
Chai
,
T. C.
,
Tan
,
T. C.
, and
Pinjala
,
D.
,
2008
, “
Board Level Solder Joint Reliability Analysis of a Fine Pitch Cu Post Type Wafer Level Package (WLP
),”
Microelectron. Reliab.
,
48
(
4
), pp.
602
610
.10.1016/j.microrel.2007.05.009
3.
Zhao
,
J.-H.
,
Gupta
,
V.
,
Lohia
,
A.
, and
Edwards
,
D.
,
2010
, “
Reliability Modeling of Lead-Free Solder Joints in Wafer-Level Chip Scale Packages
,”
ASME J. Electron. Packag
,
132
(
1
), p.
011005
.10.1115/1.4000754
4.
Rongen
,
R.
,
Roucou
,
R.
,
Vd Wel
,
P. J.
,
Voogt
,
F.
,
Swartjes
,
F.
, and
Weide-Zaage
,
K.
,
2014
, “
Reliability of Wafer Level Chip Scale Packages
,”
Microelectron. Reliab.
,
54
(
9–10
), pp.
1988
1994
.10.1016/j.microrel.2014.07.012
5.
Chaparala
,
S. C.
,
Roggeman
,
B. D.
,
Pitarresi
,
J. M.
,
Sammakia
,
B. G.
,
Jackson
,
J.
,
Griffin
,
G.
, and
McHugh
,
T.
,
2005
, “
Effect of Geometry and Temperature Cycle on the Reliability of WLCSP Solder Joints
,”
IEEE T. Compon. Pack. T.
,
28
(
3
), pp.
441
448
.10.1109/TCAPT.2005.853589
6.
Lai
,
Y.-S.
, and
Wang
,
T. H.
,
2007
, “
Optimal Design Towards Enhancement of Board-Level Thermomechanical Reliability of Wafer-Level Chip-Scale Packages
,”
Microelectron. Reliab.
,
47
(
1
), pp.
104
110
.10.1016/j.microrel.2006.04.008
7.
Lee
,
C.
,
Liu
,
H.
, and
Chiang
,
K.
,
2007
, “
3-D Structure Design and Reliability Analysis of Wafer Level Package With Stress Buffer Mechanism
,”
IEEE Trans. Compon. Pack. Technol.
,
30
(
1
), pp.
110
118
.10.1109/TCAPT.2007.892083
8.
Lee
,
W. W.
,
Nguyen
,
L. T.
, and
Selvaduray
,
G. S.
,
2000
, “
Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages
,”
Microelectron. Reliab.
,
40
(
2
), pp.
231
244
.10.1016/S0026-2714(99)00061-X
9.
Luo
,
L.
,
Zhang
,
B.
,
Zhang
,
G.
, and
Xu
,
Y.
,
2020
, “
Rapid Prediction of Cured Shape Types of Composite Laminates Using a FEM-ANN Method
,”
Compos. Struct.
,
238
(
15
), pp.
111980
111990
.10.1016/j.compstruct.2020.111980
10.
Vassilopoulos
,
A. P.
,
2020
, “
The History of Fiber-Reinforced Polymer Composite Laminate Fatigue
,”
Int. J. Fatigue
,
134
, pp.
105512
105531
.10.1016/j.ijfatigue.2020.105512
11.
Shiraiwa
,
T.
,
Briffod
,
F.
,
Miyazawa
,
Y.
, and
Enoki
,
M.
,
2017
, “
Fatigue Performance Prediction of Structural Materials by Multi-Scale Modeling and Machine Learning
,”
Proceedings of the Fourth World Congress on Integrated Computational Materials Engineering
, Ypsilanti,
MI
, May 21–25, pp.
317
326
.10.1007/978-3-319-57864-4_29
12.
Pleune
,
T. T.
, and
Chopra
,
O. K.
,
2000
, “
Using Artificial Neural Networks to Predict the Fatigue Life of Carbon and Low-Alloy Steels
,”
Nucl. Eng. Des.
,
197
(
1–2
), pp.
1
12
.10.1016/S0029-5493(99)00252-6
13.
Shabani
,
M. O.
, and
Mazahery
,
A.
,
2012
, “
Artificial Intelligence in Numerical Modeling of Nano Sized Ceramic Particulates Reinforced Metal Matrix Composites
,”
Appl. Math. Model.
,
36
(
11
), pp.
5455
5465
.10.1016/j.apm.2011.12.059
14.
Joshi
,
S. N.
, and
Pande
,
S. S.
,
2011
, “
Intelligent Process Modeling and Optimization of Die-Sinking Electric Discharge Machining
,”
Appl. Soft. Comput.
,
11
(
2
), pp.
2743
2755
.10.1016/j.asoc.2010.11.005
15.
Yu
,
X.
,
Deng
,
L.
,
Zhang
,
X.
,
Chen
,
M.
,
Kuang
,
F.
, and
Wang
,
Y.
,
2018
, “
Accurate Numerical Computation of Hot Deformation Behaviors by Integrating Finite Element Method With Artificial Neural Network
,”
Int. J. Precis. Eng. Manuf.
,
19
(
3
), pp.
395
404
.10.1007/s12541-018-0047-6
16.
Hsieh
,
M.
,
2014
, “
Finite Element Analyses for Critical Designs of Low-Cost Wafer-Level Chip Scale Packages
,”
IEEE Trans. Compon. Pack. Technol.
,
4
(
3
), pp.
451
458
.10.1109/TCPMT.2013.2290796
17.
Hsieh
,
M.
, and
Tzeng
,
S.
,
2014
, “
Solder Joint Fatigue Life Prediction in Large Size and Low Cost Wafer-Level Chip Scale Packages
,”
Proceedings of the 15th International Conference on Electronic Packaging Technology
,
Chengdu, China
, Aug. 12-15, pp.
496
501
.10.1109/ICEPT.2014.6922704
18.
Darveaux
,
R.
, and
Reichman
,
C.
,
2013
, “
Solder Alloy Creep Constants for Use in Thermal Stress Analysis
,”
J. SMTA.
,
26
(
2
), pp.
11
20
. https://www.smta.org/knowledge/journal_detail.cfm?ARTICLE_ID=213
19.
Skapura
,
D. M.
,
1996
,
Building Neural Networks
,
Addison-Wesley Professional
, New York.
20.
Al-Assaf
,
Y.
, and
El Kadi
,
H.
,
2001
, “
Fatigue Life Prediction of Unidirectional Glass Fiber/Epoxy Composite Laminae Using Neural Networks
,”
Compos. Struct.
,
53
(
1
), pp.
65
71
.10.1016/S0263-8223(00)00179-3
21.
Tsou
,
C. Y.
,
Chang
,
T. N.
,
Wu
,
K. C.
,
Wu
,
P. L.
, and
Chiang
,
K. N.
,
2017
, “
Reliability Assessment Using Modified Energy Based Model for WLCSP Solder Joints
,”
Proceedings of the 2017 International Conference on Electronics Packaging
, Vol.
15
.
Yamagata, Japan
, Apr. 19–22, p.
7
.10.23919/ICEP.2017.7939312
You do not currently have access to this content.