Abstract

Monitoring and predicting temperatures at critical locations of a power electronic system is important for safety, reliability, and efficiency. As the market share of vehicles with electric powertrains continues to increase, there is also an important economic cost of failing electronic components. For inverters present in such a drive system, exceeding the temperature limit for certain critical components, such as DC-link capacitors and Silicon carbide MOSFETs, can lead to failure of the system. In such an application, extracting the temperatures using sensors from locations such as dies and capacitors require expensive modifications and poses technical challenges. It is therefore necessary to create a thermal model for the inverter system to estimate the temperature at various components in order to ensure operation within temperature limits. The model approach is also suitable for predicting the effect on the component temperature and reliability of boundary conditions such as coolant, ambient temperature, and mission profile. This study assesses the reliability of a 250 kW liquid cooled inverter system designed for traction application. The critical failure areas are the DC-link capacitors, and the SiC MOSFET dies, which are rated at 175 °C. The system is modeled as a compact system by reasonably considering each component as a lumped capacitance and estimating the thermal resistance using physical dimensions. Results from the model are then compared against experimental data from constant power testing, and good agreement is observed for the cold plate and gate driver temperatures. With the model fidelity established, the model is then used to implement drive cycles from the Environmental Protection Agency for nonroad applications. The resulting temperature profile for each component is a series of temperature peaks and troughs that contribute to damage and failure. Rainflow counting algorithm is then used to quantify the damage per mini-cycles and used to estimate the predicted life for each component based on their manufacturer provided reliability qualification, and the mission profile is executed on the test bench for validation. The results are then used to generate a system risk matrix that relates the failure risk associated with a certain mission profile and the cooling scheme. It therefore demonstrates that an automotive inverter with SiC switching devices can be credibly assessed for failure risk using a compact model that is independent of boundary conditions, in combination with established reliability correlations and techniques.

References

1.
Shenm
,
Z. J.
, and
Omura
,
I.
,
2007
, “
Power Semiconductor Devices for Hybrid, Electric, and Fuel Cell Vehicles
,”
Proc. IEEE,
95(4), pp. 778–789.10.1109/JPROC.2006.890118
2.
J. W.
,
Palmour
,
J. Q.
,
Zhang
,
M. K.
,
Das
,
R.
,
Callanan
,
A. K.
,
Agarwal
, and
D. E.
,
Grider
,
2010
, “
SiC Power Devices for Smart Grid Systems
,” The 2010 International Power Electronics Conference - ECCE ASIA (
IPEC)
, Sapporo, Japan, June 21–24, pp.
1065
1076
.10.1109/IPEC.2010.5542027
3.
Neudeck
,
P. G.
,
Okojie
,
R. S.
, and
Chen
,
L-Y.
, 2002, “
High-Temperature Electronics - A Role for Wide Bandgap Semiconductors?
Proc. IEEE
, 90(6), pp. 1065–1076.10.1109/JPROC.2002.1021571
4.
Liangchun
,
C. Y.
,
Dunne
,
G. T.
,
Matocha
,
K. S.
,
Cheung
,
K. P.
,
Suehle
,
J. S.
, and
Sheng
,
K.
,
2010
, “
Reliability Issues of SiC MOSFETs: A Technology for High-Temperature Environments
,”
IEEE Trans. Device Mater. Reliab.
,
10
(
4
), pp.
418
426
.10.1109/TDMR.2010.2077295
5.
Chinthavali
,
M.
,
Christopher
,
J.
, and
Arimilli
,
R.
,
2012
, “
Feasibility Study of a 55-kW Air-Cooled Automotive Inverter
,” Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (
APEC
), Orlando, FL, Feb.
5
9
.10.1109/APEC.2012.6166135
6.
Wright
,
N. G.
,
Horsfall
,
A. B.
, and
Vassilevski
,
K.
,
2008
, “
Prospects for SiC Electronics and Sensors
,”
Mater. Today
,
11
(
1–2
), pp.
16
21
.10.1016/S1369-7021(07)70348-6
7.
Lipkin
,
L. A.
, and
Palmour
,
J. W.
,
1999
, “
Insulator Investigation on SiC for Improved Reliability
,”
IEEE Trans. Electron Devices
,
46
(
3
), pp.
525
532
.10.1109/16.748872
8.
Poech
, M. H., Dittmer, K. J., and Gäbisch,
D.
,
1996
, “
Investigations on the Damage Mechanism of Aluminum Wire Bonds Used for High-Power Applications
,”
DVS BERICHTE
, 176, pp. 128–131.https://www.tib.eu/en/search/id/BLCP%3ACN014079564/Investigations-on-the-damage-mechanism-of-aluminium/
9.
Hamidi
,
A.
,
Coquery
,
G.
, and
Lallemand
,
R.
,
1997
, “
Reliability of High Power IGBT Modules Testing on Thermal Fatigue Effects Due to Traction Cycles
,”
European Conference On Power Electronics And Applications, Proceedings Published by Various Publishers
, Vol.
3
, Trondheim, Norway, Sept. 8–10, pp.
3
118
.
10.
Sankaran
,
V. A.
,
Chen
,
C.
,
Avant
,
C. S.
, and
Xu
,
X.
,
1997
, “
Power Cycling Reliability of IGBT Power Modules
,”
IAS'97 Conference Record of the IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting
, Vol.
2
,
IEEE
, New Orleans, LA, Oct. 5–9, pp.
1222
1227
.10.1109/IAS.1997.630841
11.
Hamidi
,
A.
,
Beck
,
N.
,
Thomas
,
K.
, and
Herr
,
E.
,
1999
, “
Reliability and Lifetime Evaluation of Different Wire Bonding Technologies for High Power IGBT Modules
,”
Microelectron. Reliab.
,
39
(
6–7
), pp.
1153
1158
.10.1016/S0026-2714(99)00164-X
12.
Held
,
M.
,
Jacob
,
P.
,
Nicoletti
,
G.
,
Scacco
,
P.
, and
Poech
,
M. H.
,
1997
, “
Fast Power Cycling Test of IGBT Modules in Traction Application
,”
Proceedings of Second International Conference on Power Electronics and Drive Systems
, Vol.
1
,
IEEE
, Singapore, May 26–29, pp.
425
430
.10.1109/PEDS.1997.618742
13.
Matsunaga
,
T.
, and
Uegai
,
Y.
,
2006
, “
Thermal Fatigue Life Evaluation of Aluminum Wire Bonds
,”
First Electronic Systemintegration Technology Conference
, Dresden, Germany, Sept. 5–7, pp.
726
731
.10.1109/ESTC.2006.280092
14.
Bryant
,
A. T.
,
Mawby
,
P. A.
,
Palmer
,
P. R.
,
Santi
,
E.
, and
Hudgins
,
J. L.
,
2008
, “
Exploration of Power Device Reliability Using Compact Device Models and Fast Electrothermal Simulation
,”
IEEE Trans. Ind. Appl.
,
44
(
3
), pp.
894
903
.10.1109/TIA.2008.921388
15.
Miner
,
M. A.
,
1945
, “
Cumulative Damage in Fatigue
,”
ASME J. Appl. Mech.
,
12
(
3
), pp.
A159
A164
.10.1115/1.4009458
16.
Santini
,
T.
,
Morand
,
S.
,
Fouladirad
,
M.
,
Phung
,
L.-V.
,
Miller
,
F.
,
Foucher
,
B.
,
Grall
,
A.
, and
Allard
,
B.
,
2014
, “
Accelerated Degradation Data of SiC MOSFETs for Lifetime and Remaining Useful Life Assessment
,”
Microelectron. Reliab.
,
54
(
9–10
), pp.
1718
1723
.10.1016/j.microrel.2014.07.082
17.
Qiu
,
Z.
,
Zhang
,
J.
,
Ning
,
P.
, and
Wen
,
X.
,
2017
, “
Reliability Modeling and Analysis of SiC MOSFET Power Modules
,”
IECON-43rd Annual Conference of the IEEE Industrial Electronics Society
,
IEEE
, Beijing, China, Oct. 29–Nov. 1, pp.
1459
1463
.10.1109/IECON.2017.8216248
18.
Ceccarelli
,
L.
,
Kotecha
,
R. M.
,
Bahman
,
A. S.
,
Iannuzzo
,
F.
, and
Mantooth
,
H. A.
,
2019
, “
Mission-Profile-Based Lifetime Prediction for a SiC MOSFET Power Module Using a Multi-Step Condition-Mapping Simulation Strategy
,”
IEEE Trans. Power Electron.
,
34
(
10
), pp.
9698
9708
.10.1109/TPEL.2019.2893636
19.
Wang
,
Z.
,
Mahmud
,
M. H.
,
Uddin
,
M. H.
,
McPherson
,
B.
,
Sparkman
,
B.
,
Zhao
,
Y.
,
Mantooth
,
H. A.
, and
Fraley
,
J. R.
,
2018
, “
A Compact 250 kW Silicon Carbide MOSFET Based Three-Level Traction Inverter for Heavy Equipment Applications
,”
IEEE Transportation Electrification Conference and Expo
(
ITEC
), Long Beach, CA, June 13–15, pp.
1129
1134
.10.1109/ITEC.2018.8450172
20.
Wang
,
Z.
,
Wu
,
Y.
,
Mahmud
,
M. H.
,
Zhao
,
Z.
,
Zhao
,
Y.
, and
Mantooth
,
H. A.
,
2020
, “
Design and Validation of a 250-kW All-Silicon Carbide High-Density Three-Level T-Type Inverter
,”
IEEE J. Emer. Sel. Top. Power Electron.
,
8
(
1
), pp.
578
588
.10.1109/JESTPE.2019.2951625
21.
Wang
,
Z.
,
Wu
,
Y.
,
Mahmud
,
M.
,
Yuan
,
Z.
,
Zhao
,
Y.
, and
Mantooth
,
H. A.
, “
Busbar Design and Optimization for Voltage Overshoot Mitigation of a Silicon Carbide High-Power Three-Phase T-Type Inverter
,”
IEEE Transactions on Power Electronics
, 36(1), pp.
204
214
.10.1109/TPEL.2020.2998465
22.
Fuentes
,
C. D.
,
Kouro
,
S.
, and
Bernet
,
S.
,
2019
, “
Comparison of 1700-V SiC-MOSFET and Si-IGBT Modules Under Identical Test Setup Conditions
,”
IEEE Trans. Ind. Appl.
,
55
(
6
), pp.
7765
7775
.10.1109/TIA.2019.2934713
23.
Yang
,
L.
,
Agyakwa
,
P. A.
, and
Mark Johnson
,
C.
,
2013
, “
Physics-of-Failure Lifetime Prediction Models for Wire Bond Interconnects in Power Electronic Modules
,”
IEEE Trans. Device Mater. Reliab.
,
13
(
1
), pp.
9
17
.10.1109/TDMR.2012.2235836
24.
Bielen
,
J.
,
Gommans
,
J.-J.
, and
Theunis
,
F.
,
2006
, “
Prediction of High Cycle Fatigue in Aluminium Bond Wires: A Physics of Failure Approach Combining Experiments and Multi-Physics Simulations
,”
Proceedings of Seventh International Conference EuroSime
,
Como, Italy
, Apr. 24–26, pp.
1
7
.10.1109/ESIME.2006.1644022
25.
Meyyappan
,
K. N.
,
Hansen
,
P.
, and
McCluskey
,
P.
, “
Wire Flexure Fatigue Model for Asymmetric Bond Height
,”
ASME
Paper No. IPACK2003-35136.10.1115/IPACK2003-35136
You do not currently have access to this content.