Abstract

One of the key challenges for the electric vehicle industry is to develop high-power-density electric motors. Achieving higher power density requires efficient heat removal from inside the motor. In order to improve thermal management, a multiphysics modeling framework that is able to accurately predict the behavior of the motor, while being computationally efficient, is essential. This paper first presents a detailed validation of a lumped parameter thermal network (LPTN) model of an Internal Permanent Magnet synchronous motor within the commercially available motor-cad modeling environment. The validation is based on temperature comparison with experimental data and with more detailed finite element analysis (FEA). All critical input parameters of the LPTN are considered in detail for each layer of the stator, especially the contact resistances between the impregnation, liner, laminations, and housing. Finally, a sensitivity analysis for each of the critical input parameters is provided. A maximum difference of 4%—for the highest temperature in the slot-winding and the end-winding—was found between the LPTN and the experimental data. Comparing the results from the LPTN and the FEA model, the maximum difference was 2% for the highest temperature in the slot-winding and end-winding. As for the LPTN sensitivity analysis, the thermal parameter with the highest sensitivity was found to be the liner-to-lamination contact resistance.

References

1.
I. E. A. (IEA),
2019
,
Global EV Outlook 2019
,
IEA
,
Paris, France
.
2.
Office of Energy Efficiency & Renewable Energy,
2017
, “
Electrical and Electronics Technical Team Roadmap
,” U.S. Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability, Washington, DC.https://www.energy.gov/eere/vehicles/downloads/us-drive-electrical-and-electronics-technical-teamroadmap
3.
Staton
,
D.
,
Boglietti
,
A.
, and
Cavagnino
,
A.
,
2005
, “
Solving the More Difficult Aspects of Electric Motor Thermal Analysis in Small and Medium Size Industrial Induction Motors
,”
IEEE Trans. Energy Convers.
,
20
(
3
), pp.
620
628
.10.1109/TEC.2005.847979
4.
Madonna
,
V.
,
Walker
,
A.
,
Giangrande
,
P.
,
Serra
,
G.
,
Gerada
,
C.
, and
Galea
,
M.
,
2019
, “
Improved Thermal Management and Analysis for Stator End-Windings of Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
66
(
7
), pp.
5057
5069
.10.1109/TIE.2018.2868288
5.
Popescu
,
M.
,
Staton
,
D. A.
,
Boglietti
,
A.
,
Cavagnino
,
A.
,
Hawkins
,
D.
, and
Goss
,
J.
,
2016
, “
Modern Heat Extraction Systems for Power Traction Machines—A Review
,”
IEEE Trans. Ind. Appl.
,
52
(
3
), pp.
2167
2175
.10.1109/TIA.2016.2518132
6.
Lu
,
Q.
,
Zhang
,
X.
,
Chen
,
Y.
,
Huang
,
X.
,
Ye
,
Y.
, and
Zhu
,
Z. Q.
,
2015
, “
Modeling and Investigation of Thermal Characteristics of a Water-Cooled Permanent-Magnet Linear Motor
,”
IEEE Trans. Ind. Appl.
,
51
(
3
), pp.
2086
2096
.10.1109/TIA.2014.2365198
7.
Boglietti
,
A.
,
Cavagnino
,
A.
,
Staton
,
D.
,
Shanel
,
M.
,
Mueller
,
M.
, and
Mejuto
,
C.
,
2009
, “
Evolution and Modern Approaches for Thermal Analysis of Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
56
(
3
), pp.
871
882
.10.1109/TIE.2008.2011622
8.
Fan
,
X.
,
Zhang
,
B.
,
Qu
,
R.
,
Li
,
D.
,
Li
,
J.
, and
Huo
,
Y.
,
2019
, “
Comparative Thermal Analysis of IPMSMs With Integral-Slot Distributed-Winding (ISDW) and Fractional-Slot Concentrated-Winding (FSCW) for Electric Vehicle Application
,”
IEEE Trans. Ind. Appl.
,
55
(
4
), pp.
3577
3588
.10.1109/TIA.2019.2903187
9.
Lindh
,
P.
,
Petrov
,
I.
,
Jaatinen-Varri
,
A.
,
Gronman
,
A.
,
Martinez-Iturralde
,
M.
,
Satrustegui
,
M.
, and
Pyrhonen
,
J.
,
2017
, “
Direct Liquid Cooling Method Verified With an Axial-Flux Permanent-Magnet Traction Machine Prototype
,”
IEEE Trans. Ind. Electron.
,
64
(
8
), pp.
6086
6095
.10.1109/TIE.2017.2681975
10.
Chen
,
Q.
,
Zou
,
Z.
, and
Cao
,
B.
,
2017
, “
Lumped-Parameter Thermal Network Model and Experimental Research of Interior Pmsm for Electric Vehicle
,”
CES Trans. Electr. Mach. Syst.
,
1
(
4
), pp.
367
374
.10.23919/TEMS.2017.8241358
11.
Mellor
,
P. H.
,
Roberts
,
D.
, and
Turner
,
D. R.
,
1991
, “
Lumped Parameter Thermal Model for Electrical Machines of TEFC Design
,”
IEE Proc. B Electric Power Appl.
,
138
(
5
), pp.
205
218
.10.1049/ip-b.1991.0025
12.
Refaie
,
A. M. E.
,
Harris
,
N. C.
,
Jahns
,
T. M.
, and
Rahman
,
K. M.
,
2004
, “
Thermal Analysis of Multibarrier Interior PM Synchronous Machine Using Lumped Parameter Model
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
303
309
.10.1109/TEC.2004.827011
13.
Zhang
,
H.
,
Giangrande
,
P.
,
Sala
,
G.
,
Xu
,
Z.
,
Hua
,
W.
,
Madonna
,
V.
,
Gerada
,
D.
, and
Gerada
,
C.
,
2021
, “
Thermal Model Approach to Multisector Three-Phase Electrical Machines
,”
IEEE Trans. Ind. Electron.
,
68
(
4
), p.
2919
.10.1109/TIE.2020.2977559
14.
Sato, Y., Ishikawa
,
S.
,
Okubo
,
T.
,
Abe
,
M.
, and
Tamai
,
K.
,
2011
, “
Development of High Response Motor and Inverter System for the Nissan LEAF Electric Vehicle
,”
SAE
Technical Paper No. 2011-01-0350.10.4271/2011-01-0350
15.
Moreno
,
G.
,
2016
, “
Thermal Performance Benchmarking: Annual Report
,” National Renewable Energy Lab. (NREL), Golden, CO, Report No. NREL/MP-5400-64941.
16.
Cousineau
,
J. E.
,
Bennion
,
K.
,
DeVoto
,
D.
, and
Narumanchi
,
S.
,
2019
, “
Experimental Characterization and Modeling of Thermal Resistance of Electric Machine Lamination Stacks
,”
Int. J. Heat Mass Transfer
,
129
, pp.
152
159
.10.1016/j.ijheatmasstransfer.2018.09.051
17.
Emily Cousineau
,
J.
,
Bennion
,
K.
,
Chieduko
,
V.
,
Lall
,
R.
, and
Gilbert
,
A.
,
2018
, “
Experimental Characterization and Modeling of Thermal Contact Resistance of Electric Machine Stator-to-Cooling Jacket Interface Under Interference Fit Loading
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p. 041016.10.1115/1.4039459
18.
Wereszczak
,
A. A.
,
Emily Cousineau
,
J.
,
Bennion
,
K.
,
Wang
,
H.
,
Wiles
,
R. H.
,
Burress
,
T. B.
, and
Wu
,
T.
,
2017
, “
Anisotropic Thermal Response of Packed Copper Wire
,”
ASME J. Therm. Sci. Eng. Appl.
,
9
(
4
), p. 041006.10.1115/1.4035972
19.
Motor Design Ltd.,
2019
, “Modelling the Nissan Leaf Motor Using Motor-CAD,”
Motor Design Ltd.
, Wrexham, UK, accessed Mar. 29,
2019
, https://www.motor-design.com/resources/
20.
Boglietti
,
A.
,
Cavagnino
,
A.
, and
Staton
,
D.
,
2008
, “
Determination of Critical Parameters in Electrical Machine Thermal Models
,”
IEEE Trans. Ind. Appl.
,
44
(
4
), pp.
1150
1159
.10.1109/TIA.2008.926233
21.
Wrobel
,
R.
,
Williamson
,
S. J.
,
Booker
,
J. D.
, and
Mellor
,
P. H.
,
2016
, “
Characterizing the in Situ Thermal Behavior of Selected Electrical Machine Insulation and Impregnation Materials
,”
IEEE Trans. Ind. Appl.
,
52
(
6
), pp.
4678
4687
.10.1109/TIA.2016.2589219
22.
Boglietti
,
A.
,
Cavagnino
,
A.
, and
Staton
,
D. A.
,
2004
, “
TEFC Induction Motors Thermal Models: A Parameter Sensitivity Analysis
,”
Conference Record of the IEEE Industry Applications Conference
,
39
th IAS Annual Meeting, Seattle, WA, Oct. 3–7, pp.
2469
2476
.10.1109/IAS.2004.1348822
23.
Bennion
,
K.
, and
Cousineau
,
J.
,
2012
, “
Sensitivity Analysis of Traction Drive Motor Cooling
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Dearborn, MI, June 18–20, pp.
1
6
.10.1109/ITEC.2012.6243512
You do not currently have access to this content.