Abstract

The increased power consumption and continued miniaturization of high-powered electronic components have presented many challenges to their thermal management. To improve the efficiency and reliability of these devices, the high amount of heat that they generate must be properly removed. In this paper, a three-dimensional numerical model has been developed and experimentally validated for several manifold heat sink designs. The goal was to enhance the heat sink's thermal performance while reducing the required pumping power by lowering the pressure drop across the heat sink. The considered designs were benchmarked to a commercially available heat sink in terms of their thermal and hydraulic performances. The proposed manifolds were designed to distribute fluid through alternating inlet and outlet branched internal channels. It was found that using the manifold design with 3 channels reduced the thermal resistance from 0.061 to 0.054 °C/W with a pressure drop reduction of 0.77 kPa from the commercial cold plate. A geometric parametric study was performed to investigate the effect of the manifold's internal channel width on the thermohydraulic performance of the proposed designs. It was found that the thermal resistance decreased as the manifold's channel width decreased, up until a certain width value, below which the thermal resistance started to increase while maintaining low-pressure drop values. Where the thermal resistance significantly decreased in the 7 channels design by 16.4% and maintained a lower pressure drop value below 0.6 kPa.

References

1.
Tradat
,
M. I.
,
Manaserh
,
Y. “A.
,
Sammakia
,
B. G.
,
Hoang
,
C. H.
, and
Alissa
,
H. A.
,
2021
, “
An Experimental and Numerical Investigation of Novel Solution for Energy Management Enhancement in Data Centers Using Underfloor Plenum Porous Obstructions
,”
Appl. Energy
,
289
, p.
116663
.10.1016/j.apenergy.2021.116663
2.
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
Bani-Hani
,
D.
,
Alfallah
,
A.
,
Sammakia
,
B. G.
,
Nemati
,
K.
, and
Seymour
,
M. J.
,
2022
, “
Machine Learning Assisted Development of IT Equipment Compact Models for Data Centers Energy Planning
,”
Appl. Energy
,
305
, p.
117846
.10.1016/j.apenergy.2021.117846
3.
Shehabi
,
A.
,
Smith
,
S.
,
Sartor
,
D.
,
Brown
,
R.
,
Herrlin
,
M.
,
Koomey
,
J.
,
Masanet
,
E.
,
Horner
,
N.
,
Azevedo
,
I.
, and
Lintner
,
W.
,
2016
, “
United States Data Center Energy Usage Report
,” Lawrence Berkeley National Laboratory, Berkeley, CA, Report No.
LBNL-1005775
.https://eta.lbl.gov/publications/unitedstates-data-center-energy
4.
Ma
,
Y.
,
Ma
,
G.
,
Zhang
,
S.
, and
Xu
,
S.
,
2015
, “
Experimental Investigation on a Novel Integrated System of Vapor Compression and Pump-Driven Two Phase Loop for Energy Saving in Data Centers Cooling
,”
Energy Convers. Manage.
,
106
, pp.
194
200
.10.1016/j.enconman.2015.09.004
5.
Manaserh
,
Y. M.
,
Tradat
,
M. I.
,
Gharaibeh
,
A. R.
,
Sammakia
,
B. G.
, and
Tipton
,
R.
,
2021
, “
Shifting to Energy Efficient Hybrid Cooled Data Centers Using Novel Embedded Floor Tiles Heat Exchangers
,”
Energy Convers. Manage.
,
247
, p.
114762
.10.1016/j.enconman.2021.114762
6.
Sauciuc
,
L.
,
Chrysler
,
G.
,
Mahajan
,
R.
, and
Szleper
,
M.
,
2003
, “
Air-Cooling Extension-Performance Limits for Processor Cooling Applications
,”
Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 11–13, pp.
74
81
.10.1109/STHERM.2003.1194342
7.
Broughton
,
J.
,
Smet
,
V.
,
Tummala
,
R. R.
, and
Joshi
,
Y. K.
,
2018
, “
Review of Thermal Packaging Technologies for Automotive Power Electronics for Traction Purposes
,”
ASME J. Electron. Packag.
,
140
(
4
), p.
040801
.10.1115/1.4040828
8.
Zhang
,
H. Y.
,
Pinjala
,
D.
, and
Teo
,
P.-S.
,
2003
, “
Thermal Management of High Power Dissipation Electronic Packages: From Air Cooling to Liquid Cooling
,” Proceedings of the 5th Electronics Packaging Technology Conference (
EPTC 2003
), Singapore, Dec. 12, pp.
620
625
.10.1109/EPTC.2003.1271593
9.
Asadi
,
M.
,
Xie
,
G.
, and
Sunden
,
B.
,
2014
, “
A Review of Heat Transfer and Pressure Drop Characteristics of Single and Two-Phase Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
34
53
.10.1016/j.ijheatmasstransfer.2014.07.090
10.
Hoang
,
C. H.
,
Fallahtafti
,
N.
,
Rangarajan
,
S.
,
Gharaibeh
,
A.
,
Hadad
,
Y.
,
Arvin
,
C.
,
Sikka
,
K.
,
Schiffres
,
S. N.
, and
Sammakia
,
B.
,
2021
, “
Impact of Fin Geometry and Surface Roughness on Performance of an Impingement Two-Phase Cooling Heat Sink
,”
Appl. Therm. Eng.
,
198
, p.
117453
.10.1016/j.applthermaleng.2021.117453
11.
Sung
,
M. K.
, and
Mudawar
,
I.
,
2009
, “
Single-Phase and Two-Phase Hybrid Cooling Schemes for High-Heat-Flux Thermal Management of Defense Electronics
,”
ASME J. Electron. Packag.
, 131(2), p.
021013
.10.1115/1.3111253
12.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2018
, “
Experimental Evaluation of a Thermal Contact Liquid Cooling System for Server Electronics
,”
Appl. Therm. Eng.
,
129
, pp.
1010
1025
.10.1016/j.applthermaleng.2017.10.098
13.
Marcinichen
,
J. B.
,
Wu
,
D.
,
Paredes
,
S.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2014
, “
Dynamic Flow Control and Performance Comparison of Different Concepts of Two-Phase on-Chip Cooling Cycles
,”
Appl. Energy
,
114
, pp.
179
191
.10.1016/j.apenergy.2013.09.018
14.
Bansode
,
P. V.
,
Shah
,
J. M.
,
Gupta
,
G.
,
Agonafer
,
D.
,
Patel
,
H.
,
Roe
,
D.
, and
Tufty
,
R.
,
2020
, “
Measurement of the Thermal Performance of a Custom-Build Single-Phase Immersion Cooled Server at Various High and Low Temperatures for Prolonged Time
,”
ASME J. Electron. Packag.
,
142
(
1
), p.
011010
.10.1115/1.4045156
15.
Shah
,
J. M.
,
Padmanaban
,
K.
,
Singh
,
H.
,
Duraisamy Asokan
,
S.
,
Saini
,
S.
, and
Agonafer
,
D.
,
2021
, “
Evaluating the Reliability of Passive Server Components for Single-Phase Immersion Cooling
,”
ASME J. Electron. Packag.
,
144
(
2
), p.
021109
.10.1115/1.4052536
16.
Jalili
,
M.
,
Manousakis
,
I.
,
Goiri
,
Í.
,
Misra
,
P. A.
,
Raniwala
,
A.
,
Alissa
,
H.
,
Ramakrishnan
,
B.
,
Tuma
,
P.
,
Belady
,
C.
,
Fontoura
,
M.
, and
Bianchini
,
R.
,
2021
, “
Cost-Efficient Overclocking in Immersion-Cooled Datacenters
,” 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (
ISCA
), Valencia, Spain, June 14–18, pp. 623–636.https://www.microsoft.com/enus/research/uploads/prod/2021/04/Zissou-Overclocking-ISCA21.pdf
17.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
18.
Gullbrand
,
J.
,
Luckeroth
,
M. J.
,
Sprenger
,
M. E.
, and
Winkel
,
C.
,
2019
, “
Liquid Cooling of Compute System
,”
ASME J. Electron. Packag.
,
141
(
1
), p.
010802
.10.1115/1.4042802
19.
Lee
,
P.-S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
20.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
,
2007
, “
Evaluation of Jet Impingement, Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.10.1080/01457630701421703
21.
Ndao
,
S.
,
Peles
,
Y.
, and
Jensen
,
M. K.
,
2014
, “
Effects of Pin Fin Shape and Configuration on the Single-Phase Heat Transfer Characteristics of Jet Impingement on Micro Pin Fins
,”
Int. J. Heat Mass Transfer
,
70
, pp.
856
863
.10.1016/j.ijheatmasstransfer.2013.11.062
22.
Gupta
,
D.
,
Saha
,
P.
, and
Roy
,
S.
,
2021
, “
Computational Analysis of Perforation Effect on the Thermo-Hydraulic Performance of Micro Pin-Fin Heat Sink
,”
Int. J. Therm. Sci.
,
163
, p.
106857
.10.1016/j.ijthermalsci.2021.106857
23.
Siu-Ho
,
A.
,
Qu
,
W.
, and
Pfefferkorn
,
F.
,
2007
, “
Experimental Study of Pressure Drop and Heat Transfer in a Single-Phase Micropin-Fin Heat Sink
,”
ASME J. Electron. Packag.
, 129(4), pp.
479
487
.10.1115/1.2804099
24.
Ahmadian-Elmi
,
M.
,
Mashayekhi
,
A.
,
Nourazar
,
S. S.
, and
Vafai
,
K.
,
2021
, “
A Comprehensive Study on Parametric Optimization of the Pin-Fin Heat Sink to Improve Its Thermal and Hydraulic Characteristics
,”
Int. J. Heat Mass Transfer
,
180
, p.
121797
.10.1016/j.ijheatmasstransfer.2021.121797
25.
Li
,
Y.
,
Wang
,
Z.
,
Yang
,
J.
, and
Liu
,
H.
,
2020
, “
Thermal and Hydraulic Characteristics of Microchannel Heat Sinks With Cavities and Fins Based on Field Synergy and Thermodynamic Analysis
,”
Appl. Therm. Eng.
,
175
, p.
115348
.10.1016/j.applthermaleng.2020.115348
26.
Hasan
,
M. I.
,
2014
, “
Investigation of Flow and Heat Transfer Characteristics in Micro Pin Fin Heat Sink With Nanofluid
,”
Appl. Therm. Eng.
,
63
(
2
), pp.
598
607
.10.1016/j.applthermaleng.2013.11.059
27.
Ahmed
,
H. E.
, and
Ahmed
,
M. I.
,
2015
, “
Optimum Thermal Design of Triangular, Trapezoidal and Rectangular Grooved Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
66
, pp.
47
57
.10.1016/j.icheatmasstransfer.2015.05.009
28.
Wan
,
Z.
, and
Joshi
,
Y.
,
2017
, “
Pressure Drop and Heat Transfer Characteristics of Pin Fin Enhanced Microgaps in Single Phase Microfluidic Cooling
,”
Int. J. Heat Mass Transfer
,
115
, pp.
115
126
.10.1016/j.ijheatmasstransfer.2017.06.117
29.
Chiu
,
H.-C.
,
Hsieh
,
R.-H.
,
Wang
,
K.
,
Jang
,
J.-H.
, and
Yu
,
C.-R.
,
2017
, “
The Heat Transfer Characteristics of Liquid Cooling Heat Sink With Micro Pin Fins
,”
Int. Commun. Heat Mass Transfer
,
86
, pp.
174
180
.10.1016/j.icheatmasstransfer.2017.05.027
30.
Wiriyasart
,
S.
, and
Naphon
,
P.
,
2019
, “
Liquid Impingement Cooling of Cold Plate Heat Sink With Different Fin Configurations: High Heat Flux Applications
,”
Int. J. Heat Mass Transfer
,
140
, pp.
281
292
.10.1016/j.ijheatmasstransfer.2019.06.020
31.
Ryu
,
J. H.
,
Choi
,
D. H.
, and
Kim
,
S. J.
,
2003
, “
Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
46
(
9
), pp.
1553
1562
.10.1016/S0017-9310(02)00443-X
32.
Boteler
,
L.
,
Jankowski
,
N.
,
McCluskey
,
P.
, and
Morgan
,
B.
,
2012
, “
Numerical Investigation and Sensitivity Analysis of Manifold Microchannel Coolers
,”
Int. J. Heat Mass Transfer
,
55
(
25–26
), pp.
7698
7708
.10.1016/j.ijheatmasstransfer.2012.07.073
33.
Whitt
,
R.
,
Hudson
,
S.
,
Huitink
,
D.
,
Yuan
,
Z.
,
Emon
,
A.
, and
Luo
,
F.
,
2020
, “
Additive Manufactured Impinging Coolant, Low Electromagnetic Interference, and Nonmetallic Heat Spreader: Design and Optimization
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041004
.10.1115/1.4048493
34.
Zhou
,
F.
,
Dede
,
E. M.
, and
Joshi
,
S. N.
,
2015
, “
A Novel Design of Hybrid Slot Jet and Mini-Channel Cold Plate for Electronics Cooling
,” 2015 31st Thermal Measurement, Modeling & Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
60
67
.10.1109/SEMITHERM.2015.7100141
35.
Solovitz
,
S. A.
, and
Mainka
,
J.
,
2011
, “
Manifold Design for Micro-Channel Cooling With Uniform Flow Distribution
,”
ASME J. Fluids Eng.
,
133
(
5
), p.
051103
.10.1115/1.4004089
36.
Wei
,
T. W.
,
Oprins
,
H.
,
Cherman
,
V.
,
Beyne
,
E.
, and
Baelmans
,
M.
,
2020
, “
Experimental and Numerical Investigation of Direct Liquid Jet Impinging Cooling Using 3D Printed Manifolds on Lidded and Lidless Packages for 2.5 D Integrated Systems
,”
Appl. Therm. Eng.
,
164
, p.
114535
.10.1016/j.applthermaleng.2019.114535
37.
Gonzalez-Valle
,
C. U.
,
Samir
,
S.
, and
Ramos-Alvarado
,
B.
,
2020
, “
Experimental Investigation of the Cooling Performance of 3-D Printed Hybrid Water-Cooled Heat Sinks
,”
Appl. Therm. Eng.
,
168
, p.
114823
.10.1016/j.applthermaleng.2019.114823
38.
Jung
,
K. W.
,
Cho
,
E.
,
Lee
,
H.
,
Kharangate
,
C.
,
Zhou
,
F.
,
Asheghi
,
M.
,
Dede
,
E. M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-3D Manifold Coolers (EMMCs): Part 1—Experimental Study of Single-Phase Cooling Performance With R-245fa
,”
ASME J. Electron. Packag.
,
142
(
3
), p.
031117
.10.1115/1.4047846
39.
Jung
,
K. W.
,
Hazra
,
S.
,
Kwon
,
H.
,
Piazza
,
A.
,
Jih
,
E.
,
Asheghi
,
M.
,
Gupta
,
M. P.
,
Degner
,
M.
, and
Goodson
,
K. E.
,
2020
, “
Thermal and Manufacturing Design Considerations for Silicon-Based Embedded Microchannel-Three-Dimensional Manifold Coolers—Part 2: Parametric Study of EMMCs for High Heat Flux (∼1 kW/cm2) Power Electronics Cooling
,”
ASME J. Electron. Packag.
,
142
(
3
), p.
031117
.10.1115/1.4047883
40.
Zhou
,
J.
,
Chen
,
X.
,
Zhao
,
Q.
,
Lu
,
M.
,
Hu
,
D.
, and
Li
,
Q.
,
2021
, “
Flow Thermohydraulic Characterization of Hierarchical-Manifold Microchannel Heat Sink With Uniform Flow Distribution
,”
Appl. Therm. Eng.
,
198
, p.
117510
.10.1016/j.applthermaleng.2021.117510
41.
Luo
,
Y.
,
Zhang
,
J.
, and
Li
,
W.
,
2020
, “
A Comparative Numerical Study on Two-Phase Boiling Fluid Flow and Heat Transfer in the Microchannel Heat Sink With Different Manifold Arrangements
,”
Int. J. Heat Mass Transfer
,
156
, p.
119864
.10.1016/j.ijheatmasstransfer.2020.119864
42.
Zhou
,
F.
,
Liu
,
Y.
,
Liu
,
Y.
,
Joshi
,
S. N.
, and
Dede
,
E. M.
,
2016
, “
Modular Design for a Single-Phase Manifold Mini/Microchannel Cold Plate
,”
ASME J. Therm. Sci. Eng. Appl.
,
8
(
2
), p.
021010
.10.1115/1.4031932
43.
Gilmore
,
N.
,
Timchenko
,
V.
, and
Menictas
,
C.
,
2020
, “
Open Manifold Microchannel Heat Sink for High Heat Flux Electronic Cooling With a Reduced Pressure Drop
,”
Int. J. Heat Mass Transfer
,
163
, p.
120395
.10.1016/j.ijheatmasstransfer.2020.120395
44.
Gharaibeh
,
A. R.
,
Tradat
,
M. I.
,
Rangarajan
,
S.
,
Sammakia
,
B. G.
, and
Alissa
,
H. A.
,
2022
, “
Multi-Objective Optimization of 3D Printed Liquid Cooled Heat Sink With Guide Vanes for Targeting Hotspots in High Heat Flux Electronics
,”
Int. J. Heat Mass Transfer
,
184
, p.
122287
.10.1016/j.ijheatmasstransfer.2021.122287
45.
Myers
,
J.
, and
Cohen
,
A.
,
2005
, “
Copper-Tube Corrosion in Domestic Water Systems
,”
HPAC Eng.
,
77
(
6
), pp.
22
31
.https://www.copper.org/publications/pub_list/pdf/a4073.pdf
You do not currently have access to this content.