Abstract

Effects of Ag content (0 ∼ 3 wt%) in Sn-xAgCu0.7 solders on microstructure characteristics and low cycling fatigue at different temperature conditions are overall investigated. To increase Ag content, the solidus points 228.8 °C of Sn-Cu0.7 gradually decrease to 218.5 °C and temperature range of solid–liquid coexistence phase reduces at the same time. The Sn-Cu0.7 matrix consisted of small particles of Cu6Sn5 within β-Sn equiaxial grains and did not significantly influence solder hardness. Moreover, much intermetallic compound of plate-like Ag3Sn and rod-like Cu6Sn5 existed in Sn-xAgCu0.7 solders enables to enhance the hardness due to dense network of Ag3Sn precipitation and near eutectic point. As a result of plastic displacement decreases with higher Ag additions, better fatigue lifetime could be achieved at Ag content to 1.5 wt%. Besides, crack stemmed from thicker intermetallic compounds (IMC) layer in Sn-3.0Ag-Cu0.7 solder interface will decrease fatigue performance especially for 80 °C and 120 °C.

References

1.
Yoon
,
J. W.
,
Kim
,
S. W.
,
Koo
,
J. M.
,
Kim
,
D. G.
, and
Jung
,
S. B.
,
2004
, “
Reliability Investigation and Interfacial Reaction of Ball-Grid-Array Packages Using the Lead-Free Sn-Cu Solder
,”
J. Electron. Mater.
,
33
(
10
), pp.
1190
1199
.10.1007/s11664-004-0122-x
2.
Boettinger
,
W. J.
,
Johnson
,
C. E.
,
Bendersky
,
L. A.
,
Moon
,
K. W.
,
Williams
,
M. E.
, and
Stafford
,
G. R.
,
2005
, “
Whisker and Hillock Formation on Sn, Sn–Cu and Sn–Pb Electrodeposits
,”
Acta Mater.
,
53
(
19
), pp.
5033
5050
.10.1016/j.actamat.2005.07.016
3.
Li
,
Y. L.
,
Wang
,
Z. L.
,
Li
,
X. W.
, and
Lei
,
M.
,
2020
, “
Effect of Temperature and Substrate Surface Roughness on Wetting Behavior and Interfacial Structure Between Sn–35Bi–1Ag Solder and Cu Substrate
,”
J. Mater Sci: Mater Electron
,
31
(
5
), pp.
4224
4236
.10.1007/s10854-020-02975-x
4.
Yin
,
L.
,
Zhang
,
Z.
,
Zuo
,
C.
,
Fang
,
N.
,
Yao
,
Z.
, and
Su
,
Z.
,
2020
, “
Microstructures and Properties of Sn–0.3Ag–0.7Cu Solder Doped With Graphene Nanosheets
,”
J. Mater Sci: Mater Electron.
,
31
(
3
), pp.
1861
1867
.10.1007/s10854-019-02705-y
5.
Gayle
,
F. W.
,
Becka
,
G.
,
Syed
,
A.
,
Badgett
,
J.
,
Whitten
,
G.
,
Pan
,
T.-Y.
,
Grusd
,
A.
,
Bauer
,
B.
,
Lathrop
,
R.
,
Slattery
,
J.
,
Anderson
,
I.
,
Foley
,
J.
,
Gickler
,
A.
,
Napp
,
D.
,
Mather
,
J.
, and
Olson
,
C.
,
2001
, “
High Temperature Lead-Free Solder for Microelectronics
,”
JOM
,
53
(
6
), pp.
17
21
.10.1007/s11837-001-0097-5
6.
Sundelin
,
J. J.
,
Nurmi
,
S. T.
,
Lepistö
,
T. K.
, and
Ristolainen
,
E. O.
,
2006
, “
Mechanical and Microstructural Properties of SnAgCu Solder Joints
,”
Mater. Sci. Eng. A
,
420
(
1–2
), pp.
55
62
.10.1016/j.msea.2006.01.065
7.
Zhu
,
F.
,
Zhang
,
H.
,
Guan
,
R.
, and
Liu
,
S.
,
2007
, “
Effects of Temperature and Strain Rate on Mechanical Property of Sn96.5Ag3Cu0.5
,”
J. Alloys Compd.
,
438
(
1–2
), pp.
100
105
.10.1016/j.jallcom.2006.08.009
8.
Fukuda
,
Y.
,
Casey
,
P.
, and
Pecht
,
M.
,
2003
, “
Evaluation of Selected Japanese Lead-Free Consumer Electronics
,”
IEEE Trans. Electron. Packag. Manuf.
,
26
(
4
), pp.
305
312
.10.1109/TEPM.2003.820820
9.
Lee
,
H. T.
, and
Chen
,
Y. F.
,
2011
, “
Evolution of Ag3Sn Intermetallic Compounds During Solidification of Eutectic Sn–3.5Ag Solder
,”
J. Alloys Compd.
,
509
(
5
), pp.
2510
2517
.10.1016/j.jallcom.2010.11.068
10.
Henderson
,
D. W.
,
Gosselin
,
T.
,
Sarkhel
,
A.
,
Kang
,
S. K.
,
Choi
,
W.-K.
,
Shih
,
D.-Y.
,
Goldsmith
,
C.
, and
Puttlitz
,
K. J.
,
2002
, “
Ag3Sn Plate Formation in the Solidification of Near Ternary Eutectic Sn–Ag–Cu Alloys
,”
J. Mater. Res.
,
17
(
11
), pp.
2775
2778
.10.1557/JMR.2002.0402
11.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
,
2003
, “
Effects of Intermetallic Compounds on Properties of Sn–Ag–Cu Lead-Free Soldered Joints
,”
J. Alloys Compd.
,
352
(
1–2
), pp.
226
236
.10.1016/S0925-8388(02)01166-0
12.
Andersson
,
C.
,
Lai
,
Z.
,
Liu
,
J.
,
Jiang
,
H.
, and
Yu
,
Y.
,
2005
, “
Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders
,”
Mater. Sci. Eng.
,
394
(
1–2
), pp.
20
27
.10.1016/j.msea.2004.10.043
13.
Mutoh
,
Y.
,
Zhao
,
J.
,
Miyashita
,
Y.
, and
Kanchanomai
,
C.
,
2002
, “
Fatigue Crack Growth Behavior of Lead-Containing and Lead-Free Solders
,”
Soldering Surf. Mount Technol.
,
14
(
3
), pp.
37
45
.10.1108/09540910210444719
14.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2002
, “
Low Cycle Fatigue and Fatigue Crack Growth Behavior of Sn–Ag Eutectic Solder
,”
Soldering Surf. Mount Technol.
,
14
(
3
), pp.
30
36
.10.1108/09540910210444700
15.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2003
, “
Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5 Sn–3.5 Ag
,”
Mater. Sci. Eng.
,
A345
, pp.
90
98
.https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902217185099564
16.
Kanchanomai
,
C.
,
Miyashita
,
Y.
, and
Mutoh
,
Y.
,
2002
, “
Low-Cycle Fatigue Behavior and Mechanisms of a Lead-Free Solder 96.5 Sn/3.5 Ag
,”
J. Electron. Mater.
,
31
(
2
), pp.
142
151
.10.1007/s11664-002-0161-0
17.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2007
, “
Fatigue Crack Initiation and Growth in Solder Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
(
5
), pp.
443
457
.10.1111/j.1460-2695.2006.01088.x
18.
Chuang
,
W. C.
, and
Chen
,
W. L.
,
2020
, “
Fatigue Prediction for Molded Wafer-Level Package During Temperature Cycling
,”
ASME J. Electron. Packag.
,
142
(
1
), p.
011007
.10.1115/1.4044489
19.
Kanchanomai
,
C.
,
Miyashita
,
Y.
,
Mutoh
,
Y.
, and
Mannan
,
S. L.
,
2003
, “
Influence of Frequency on Low Cycle Fatigue Behavior of Pb-Free Solder 96.5Sn/3, 5Ag
,”
Mater. Sci. Eng. A
,
345
(
1–2
), pp.
90
98
.10.1016/S0921-5093(02)00461-6
20.
Lee
,
H. T.
,
Lin
,
H. S.
,
Lee
,
C. S.
, and
Chen
,
P. W.
,
2005
, “
Reliability of Sn–Ag–Sb Lead-Free Solder Joints
,”
Mater. Sci. Eng. A
,
407
(
1–2
), pp.
36
44
.10.1016/j.msea.2005.07.049
21.
Kim
,
K. S.
,
Huh
,
S. H.
, and
Suganuma
,
K.
,
2002
, “
Effect of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag- Cu Alloys
,”
Mater. Sci. Eng.
,
333
(
1–2
), pp.
106
114
.10.1016/S0921-5093(01)01828-7
22.
Borgesen
,
P.
,
Wentlent
,
L.
,
Alghoul
,
T.
,
Sivasubramony
,
R.
,
Yadav
,
M.
,
Thekkut
,
S.
,
Cuevas
,
J. L. T.
, and
Greene
,
C.
,
2019
, “
A Mechanistic Model of Damage Evolution in Lead Free Solder Joints Under Combinations of Vibration and Thermal Cycling With Varying Amplitudes
,”
Microelectron. Reliab.
,
95
, pp.
65
73
.10.1016/j.microrel.2019.02.001
23.
Ohnuma
,
I.
,
Miyashita
,
M.
,
Anzai
,
K.
,
Liu
,
X. J.
,
Ohtani
,
H.
,
Kainuma
,
R.
, and
Ishida
,
K.
,
2000
, “
Phase Equilibria and the Related Properties of Sn-Ag-Cu Based Pb-Free Solder Alloys
,”
J. Electron. Mater.
,
29
(
10
), pp.
1137
1144
.10.1007/s11664-000-0004-9
24.
Yen
,
Y. W.
,
Dwi Laksono
,
A.
, and
Chiao
,
Y. Y.
,
2019
, “
Investigation of the Interfacial Reactions Between Sn-3.0 wt%Ag-0.5 wt% Cu Solder and Cu-Ti Alloy (C1990HP)
,”
Microelectron. Reliab.
,
96
, pp.
29
36
.10.1016/j.microrel.2019.03.006
25.
Lee
,
J. H.
,
Yu
,
A. M.
,
Kim
,
J. H.
,
Kim
,
M. S.
, and
Kang
,
N. H.
,
2008
, “
Reaction Properties and Interfacial Intermetallics for Sn-xAg-0.5Cu Solders as a Function of Ag Content
,”
Met. Mater. Inter.
,
14
(
5
), pp.
649
654
.10.3365/met.mat.2008.10.649
26.
Lee
,
K. O.
,
Yu
,
J.
,
Park
,
T. S.
, and
Lee
,
S. B.
,
2013
, “
Effects of Pad Metallization on the Low Cycle Fatigue Characteristics of Sn-Based Solder Joints
,”
Inter. J. Fatigue
,
48
, pp.
1
8
.10.1016/j.ijfatigue.2012.12.002
27.
Tohmyoh
,
H.
,
Ishikawa
,
S.
,
Watanabe
,
S.
,
Kuroha
,
M.
, and
Nakano
,
Y.
,
2013
, “
Estimation and Visualization of the Fatigue Life of Pb-Free SAC Solder Bump Joints Under Thermal Cycling
,”
Microelectron. Reliab.
,
53
(
2
), pp.
314
320
.10.1016/j.microrel.2012.08.012
28.
Motalab
,
M. H.
,
Cai
,
Z. J.
,
Suhling
,
J. C.
, and
Lall
,
P. D.
,
2012
, “
Determination of Anand Constants for SAC Solders Using Stress-Strain or Creep Data
,”
13th IEEE Itherm Conference
, San Diego, CA, May 30–June 1, pp.
910
922
.10.1109/ITHERM.2012.6231522
29.
Otiaba
,
K. C.
,
Bhatti
,
R. S.
,
Ekere
,
N. N.
,
Mallik
,
S.
, and
Ekpu
,
M.
,
2013
, “
Finite Element Analysis of the Effect of Silver Content for Sn–Ag–Cu Alloy Compositions on Thermal Cycling Reliability of Solder Die Attach
,”
Eng. Failure Anal.
,
28
, pp.
192
207
.10.1016/j.engfailanal.2012.10.008
You do not currently have access to this content.