Abstract

Boiling heat transfer (BHT) is a promising technique for cooling the high heat flux emitted from next-generation electronic devices. However, critical heat flux (CHF) is a significant problem in BHT because it restricts the maximum performance of cooling devices using BHT. Nanofluid has been widely used to increase the CHF. In this study, the authors investigated the BHT of a compact cooling device at low pressure using a calcium carbonate nanofluid composed of partially soluble particles in water. The experimental result found that the CHF with the calcium carbonate nanofluid is 170 W/cm2 and does not deteriorate compared with nanofluid composed of insoluble nanoparticles. Furthermore, the total thermal resistance in the compact cooling device did not increase with the calcium carbonate nanofluid until 3000 min, while CHF was observed with the insoluble nanofluid at 1200 min.

References

1.
Cavin
,
R. K.
,
Lugli
,
P.
, and
Zhirnov
,
V. V.
,
2012
, “
Science and Engineering Beyond Moore's Law
,”
Proc. IEEE
,
100
(
Special Centennial Issue
), pp.
1720
1749
.10.1109/JPROC.2012.2190155
2.
Knechtel
,
J.
,
Sinanoglu
,
O.
,
Elfadel
,
I. A. M.
,
Lienig
,
J.
, and
Sze
,
C. C.
,
2017
, “
Large-Scale 3D Chips: Challenges and Solutions for Design Automation, Testing, and Trustworthy Integration
,”
IPSJ Trans. Syst. LSI Des. Methodol.
,
10
(
0
), pp.
45
62
.10.2197/ipsjtsldm.10.45
3.
Agostini
,
B.
,
Fabbri
,
M.
,
Park
,
J. E.
,
Wojtan
,
L.
,
Thome
,
J. R.
, and
Michel
,
B.
,
2007
, “
State of the Art of High Heat Flux Cooling Technologies
,”
Heat Transfer Eng.
,
28
(
4
), pp.
258
281
.10.1080/01457630601117799
4.
El-Genk
,
M. S.
,
2012
, “
Immersion Cooling Nucleate Boiling of High Power Computer Chips
,”
Energy Conver. Manage.
,
53
(
1
), pp.
205
218
.10.1016/j.enconman.2011.08.008
5.
Faghri
,
A.
,
2014
, “
Heat Pipes: Review, Opportunities and Challenges
,”
Front. Heat Pipes (FHP
),
5
(
1
), pp.
1
48
.10.5098/fhp.5.1
6.
Bulut
,
M.
,
Kandlikar
,
S. G.
, and
Sozbir
,
N.
,
2019
, “
A Review of Vapor Chambers
,”
Heat Transfer Eng.
,
40
(
19
), pp.
1551
1573
.10.1080/01457632.2018.1480868
7.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
,
2004
, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
,
126
(
4
), pp.
518
526
.10.1115/1.1778187
8.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
9.
Cao
,
Z.
,
Wu
,
Z.
, and
Sundén
,
B.
,
2019
, “
Heat Transfer Prediction and Critical Heat Flux Mechanism for Pool Boiling of NOVEC-649 on Microporous Copper Surfaces
,”
Int. J. Heat Mass Transfer
,
141
, pp.
818
834
.10.1016/j.ijheatmasstransfer.2019.07.036
10.
Sun
,
Z.
,
Chen
,
X.
, and
Qiu
,
H.
,
2014
, “
Experimental Investigation of a Novel Asymmetric Heat Spreader With Nanostructure Surfaces
,”
Exp. Thermal Fluid Sci.
,
52
, pp.
197
204
.10.1016/j.expthermflusci.2013.09.011
11.
Mohammed
,
R. K.
,
Xia
,
Y.
,
Sahan
,
R. A.
, and
Pang
,
Y. F.
,
2012
, “
Performance Improvements of Air-Cooled Thermal Tool With Advanced Technologies
,” 28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(SEMI-THERM)
, San Jose, CA, Mar. 18–22, pp.
354
361
.10.1109/STHERM.2012.6188873
12.
Noie
,
S. H.
,
Heris
,
S. Z.
,
Kahani
,
M.
, and
Nowee
,
S. M.
,
2009
, “
Heat Transfer Enhancement Using Al2O3/Water Nanofluid in a Two-Phase Closed Thermosyphon
,”
Int. J. Heat Fluid Flow
,
30
(
4
), pp.
700
705
.10.1016/j.ijheatfluidflow.2009.03.001
13.
Chan
,
M. A.
,
Yap
,
C. R.
, and
Ng
,
K. C.
,
2010
, “
Pool Boiling Heat Transfer of Water on Finned Surfaces at Near Vacuum Pressures
,”
ASME J. Heat Transfer
,
132
(
3
), p.
031501
.10.1115/1.4000054
14.
Taylor
,
R. A.
, and
Phelan
,
P. E.
,
2009
, “
Pool Boiling of Nanofluids: Comprehensive Review of Existing Data and Limited New Data
,”
Int. J. Heat Mass Transfer
,
52
(
23–24
), pp.
5339
5347
.10.1016/j.ijheatmasstransfer.2009.06.040
15.
Kim
,
S. J.
,
Bang
,
I. C.
,
Buongiorno
,
J.
, and
Hu
,
L. W.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
16.
Okawa
,
T.
,
Takamura
,
M.
, and
Kamiya
,
T.
,
2012
, “
Boiling Time Effect on CHF Enhancement in Pool Boiling of Nanofluids
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2719
2725
.10.1016/j.ijheatmasstransfer.2012.01.013
17.
Kim
,
H. D.
, and
Kim
,
M. H.
,
2007
, “
Effect of Nanoparticle Deposition on Capillary Wicking That Influences the Critical Heat Flux in Nanofluids
,”
Appl. Phys. Lett.
,
91
(
1
), p.
014104
.10.1063/1.2754644
18.
Yuki
,
K.
,
Sugiura
,
T.
, and
Suzuki
,
K.
,
2014
, “
Application of Nanoparticles-Assembled Bi-Porous Structures to Power Electronics Cooling
,”
Fifth International Conference on Porous Media and Their Applications in Science, Engineering and Industry, ECI Symposium Series
, Kona, Hawaii, June 22–27, Paper No. ICPM5.https://dc.engconfintl.org/cgi/viewcontent.cgi?article=1051&context=porous_media_V
19.
Brečević
,
L.
, and
Nielsen
,
A. E.
,
1989
, “
Solubility of Amorphous Calcium Carbonate
,”
J. Crystal Growth
,
98
(
3
), pp.
504
510
.10.1016/0022-0248(89)90168-1
You do not currently have access to this content.