A general irreversible cycle model of a magnetic Ericsson refrigerator is established. The irreversibilities in the cycle model result from the finite-rate heat transfer between the working substance and the external heat reservoirs, the inherent regenerative loss, the additional regenerative loss due to thermal resistances, and the heat leak loss between the external heat reservoirs. The cycle model is used to optimize the performance of the magnetic Ericsson refrigeration cycle. The fundamental optimum relation between the cooling rate and the coefficient of performance of the cycle is derived. The maximum coefficient of performance, maximum cooling rate and other relevant important parameters are calculated. The optimal operating region of the cycle is determined. The results obtained here are very general and will be helpful for the optimal design and operation of the magnetic Ericsson refrigerators.

1.
Chen
,
J.
, and
Yan
,
Z.
,
1991
, “
The Effect of Field-dependent Heat Capacity on Regeneration in Magnetic Ericsson Cycle
,”
J. Appl. Phys.
,
69
(
9
), pp.
6245
6247
.
2.
Dai
,
W.
,
1992
, “
Regenerative Balance in Magnetic Ericsson Refrigeration Cycles
,”
J. Appl. Phys.
,
71
(
10
), pp.
5272
5274
.
3.
Chen
,
G. L.
,
Mei
,
V. C.
, and
Chen
,
F. C.
,
1992
, “
Analysis of Terbium Thermodynamic Characteristics for Magnetic Heat Pump Applications
,”
J. Appl. Phys.
,
72
(
1
), pp.
3908
3911
.
4.
Yan
,
Z.
, and
Chen
,
J.
,
1992
, “
The Effect of Field-dependent Heat Capacity on the Characteristics of the Ferromagnetic Ericsson Refrigeration Cycle
,”
J. Appl. Phys.
,
72
(
1
), pp.
1
5
.
5.
Yan
,
Z.
,
1995
, “
On the Criterion of Perfect Regeneration for a Magnetic Ericsson Cycle
,”
J. Appl. Phys.
,
78
(
5
), pp.
2903
2905
.
6.
Chen
,
J.
, and
Yan
,
Z.
,
1998
, “
The Effect of Thermal Resistances and Regenerative Losses on the Performance Characteristics of a Magnetic Ericsson Refrigeration Cycle
,”
J. Appl. Phys.
,
84
(
4
), pp.
1791
1795
.
7.
Hahuraku
,
Y.
,
1987
, “
Thermodynamic Simulation of a Rotating Ericsson-cycle Magnetic Refrigerator without a Regenerator
,”
J. Appl. Phys.
,
62
(
5
), pp.
1560
1563
.
8.
Hashimoto
,
T.
,
Kuzuhara
,
T.
,
Sahashi
,
M.
,
Inomata
,
K.
,
Tomokiya
,
A.
, and
Yayama
,
H.
,
1987
, “
New Application of Complex Magnetic Materials to the Magnetic Refrigerant in an Ericsson Magnetic Refrigerator
,”
J. Appl. Phys.
,
62
(
9
), pp.
3873
3878
.
9.
Zemansky, M. W., 1968, Heat and Thermodynamics, McGraw-Hill, New York.
10.
Vonsovskii, S. V., 1974, Magnetism, Wiley, New York.
11.
Chen
,
J.
, and
Yan
,
Z.
,
1996
, “
The General Performance Characteristics of a Stirling Refrigerator with Regenerative Loss
,”
J. Phys. D: Appl. Phys.
,
29
(
4
), pp.
987
990
.
12.
Andresen, B., 1983, Finite-time Thermodynamics, Physics Laboratory, University of Copenhagen, Copenhagen.
13.
Bejan, A., 1988, Advanced Engineering Thermodynamics, Wiley, New York.
14.
Chen
,
J.
, and
Yan
,
Z.
,
1989
, “
Unified Description of Endoreversible Cycles
,”
Phys. Rev. A
,
39
(
8
), pp.
4140
4147
.
15.
De Vos, A., 1992, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford.
16.
Bejan
,
A.
,
1989
, “
Theory of Heat Transfer-irreversible Refrigeration Plant
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1631
1639
.
17.
Chen
,
J.
,
1994
, “
The Maximum Power Output and Maximum Efficiency of an Irreversible Carnot Heat Engine
,”
Phys. Rev. A
,
27
(
6
), pp.
1144
1149
.
18.
Chen
,
J.
,
1998
, “
A Universal Model of an Irreversible Combined Carnot Cycle System and its General Performance Characteristics
,”
J. Phys. A
,
31
(
15
), pp.
3383
3394
.
You do not currently have access to this content.