Optimization of thermodynamic cycles is important for the efficient utilization of energy sources; indeed, it is more crucial for the cycles utilizing low-grade heat sources where the cycle efficiencies are smaller compared to high temperature power cycles. This paper presents the optimization of a combined power/cooling cycle, also known as the Goswami cycle, which combines the Rankine and absorption refrigeration cycles. The cycle uses a special binary fluid mixture as the working fluid and produces a power and refrigeration. In this regard, multi-objective genetic algorithms (GAs) are used for Pareto approach optimization of the thermodynamic cycle. The optimization study includes two cases. In the first case, the performance of the cycle is evaluated as it is used as a bottoming cycle and in the second case, as it is used as a top cycle utilizing solar energy or geothermal sources. The important thermodynamic objectives that have been considered in this work are, namely, work output, cooling capacity, effective first law, and exergy efficiencies. Optimization is carried out by varying the selected design variables, such as boiler temperature and pressure, rectifier temperature, and basic solution concentration. The boiler temperature is varied between 70–150 °C and 150–250 °C for the first and the second cases, respectively.

References

1.
Kalina
,
A. I.
, 1984, “
Combined Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
, pp.
737
742
.
2.
Maloney
,
J. D.
, and
Robertson
,
R. C.
, 1953, Thermodynamic Study of Ammonia-Water Heat Power Cycles,
National Laboratory
, Oak Ridge, TN, Technical Report No. CF-53-8-43.
3.
Park
,
Y.
, and
Sonntag
,
R.
, 1990, “
A Preliminary Study of the Kalina Power Cycle in Connection With a Combined Cycle System
,”
Int. J. Energy Res.
,
14
, pp.
153
162
.
4.
Ibrahim
,
O. M.
, and
Klein
,
S. A.
, 1996, “
Absorption Power Cycles
,”
Energy
,
21
, pp.
21
27
.
5.
Marston
,
C. H.
, 1990, “
Parametric Analysis of the Kalina Cycle
,”
ASME J. Eng. Gas Turbines Power
,
112
, pp.
107
116
.
6.
Abovsky
,
V.
, and
Watanasiri
,
S.
, 1998, “
Mixing Rules for Van der Waals-Type Equations of State Based on Activity-Coefficient Models
,”
Int. J. Thermophys.
,
19
(
5
), pp.
1429
1445
.
7.
Goswami
,
D. Y.
, 1995, “
Solar Thermal Power: Status of Technologies and Opportunities for Research
,”
Proceedings of the 2nd ISHMT-ASME Heat and Mass Transfer Conference
,
Tata McGraw Hill
,
New Delhi, India
, pp.
57
60
.
8.
Goswami
,
D. Y.
, 1998, “
Solar Thermal Power Technology: Present Status and Ideas
,”
Energy Sources
,
20
, pp.
137
145
.
9.
Xu
,
F.
,
Goswami
,
D. Y.
, and
Bhagwat
,
S. S.
, 2000, “
A Combined Power/Cooling Cycle
,”
Energy
,
25
(
3
), pp.
233
246
.
10.
Hasan
,
A. A.
,
Goswami
,
D. Y.
, and
Vijayaraghavan
,
S.
, 2002, “
First and Second Law Analysis of a New Power and Refrigeration Thermodynamic Cycle Using a Solar Heat Source
,”
Sol. Energy
,
73
(
5
), pp.
385
393
.
11.
Hasan
,
A. A.
, and
Goswami
,
D. Y.
, 2003, “
Exergy Analysis of a Combined Power and Refrigeration Thermodynamic Cycle Driven by a Solar Heat Source
,”
ASME J. Sol. Energy Eng.
,
125
, pp.
55
60
.
12.
Tamm
,
G.
, and
Goswami
,
D. Y.
, 2003, “
Novel Combined Power and Cooling Thermodynamic Cycle for Low Temperature Heat Sources, Part II: Experimental Investigation
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
223
229
.
13.
Tamm
,
G.
,
Goswami
,
D. Y.
,
Lu
,
S.
, and
Hasan
,
A. A.
, 2003, “
Novel Combined Power and Cooling Thermodynamic Cycle for Low Temperature Heat Sources, Part I: Theoretical Investigation
,”
ASME J. Sol. Energy Eng.
,
125
(
2
), pp.
218
222
.
14.
Martin
,
C.
, and
Goswami
,
D. Y.
, 2004, “
Analysis of Experimental Power and Cooling Production in a Combined Power and Cooling Cycle
,”
17th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy on Process Systems
, Guanajuato City, Mexico, pp.
1235
1244
.
15.
Martin
,
C.
, and
Goswami
,
D. Y.
, 2006, “
Effectiveness of Cooling Production With a Combined Power and Cooling Thermodynamic Cycle
,”
Appl. Therm. Eng.
,
26
(
5–6
), pp.
576
582
.
16.
Demirkaya
,
G.
,
Vasquez Padilla
,
R.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
, 2010, “
Analysis of a Combined Power and Cooling Cycle for Low-Grade Heat Sources
,”
Int. J. Energy Res.
,
35
, pp.
1145
1157
.
17.
Vasquez Padilla
,
R.
,
Demirkaya
,
G.
,
Goswami
,
D. Y.
,
Stefanakos
,
E.
, and
Rahman
,
M. M.
, 2010, “
Analysis of Power and Cooling Cogeneration Using Ammonia-Water Mixture
,”
Energy
,
35
(
12
), pp.
4649
4657
.
18.
Renner
,
G.
, and
Ekart
,
A.
, 2003, “
Genetic Algorithms in Computer Aided Design
,”
Comput.-Aided Des.
,
35
(
8
), pp.
709
726
.
19.
Srinivas
,
N.
, and
Deb
,
K.
, 1994, “
Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms
,”
Evol. Comput.
,
2
(
3
), pp.
221
248
.
20.
Homaifar
,
H.
,
Lai
,
H. Y.
,
McCormick
,
E.
, 1994, “
System Optimization of Turbofan Engines Using Genetic Algorithms
,”
Appl. Math. Model.
,
18
(
2
), pp.
72
83
.
21.
Roosen
,
P.
,
Uhlenbruck
,
S.
, and
Lucas
,
K.
, 2003, “
Pareto Optimization of a Combined Cycle Power System as a Decision Support Tool for Trading Off Investment vs. Operating Costs
,”
Int. J. Therm. Sci.
,
42
(
6
), pp.
553
560
.
22.
Atashkari
,
K.
,
Nariman-Zadeh
,
N.
,
Pilechi
,
A.
,
Jamali
,
A.
, and
Yao
,
X.
, 2005, “
Thermodynamic Pareto Optimization of Turbojet Engines Using Multi-Objective Genetic Algorithms
,”
Int. J. Therm. Sci.
,
44
(
11
), pp.
1061
1071
.
23.
Besarati
,
S.
,
Atashkari
,
K.
,
Jamali
,
A.
,
Hajiloo
,
A.
, and
Nariman-Zadeh
,
N.
, 2010, “
Multi-Objective Thermodynamic Optimization of Combined Brayton and Inverse Brayton Cycles Using Genetic Algorithms
,”
Energy Convers. Manage.
,
51
(
1
), pp.
212
217
.
24.
Pouraghaie
,
M.
,
Atashkari
,
K.
,
Besarati
,
S.
, and
Nariman-Zadeh
,
N.
, 2010, “
Thermodynamic Performance Optimization of a Combined Power/Cooling Cycle
,”
Energy Convers. Manage.
,
51
(
1
), pp.
204
211
.
25.
Xu
,
F.
, and
Goswami
,
D. Y.
, 1999, “
Thermodynamic Properties of Ammonia-Water Mixtures for Power-Cycle Applications
,”
Energy
,
24
(
6
), pp.
525
536
.
26.
Tillner-Roth
,
R.
, and
Friend
,
D.
, 1998, “
A Helmholtz Free Energy Formulation of the Thermodynamic Properties of the Mixture {Water + Ammonia}
,”
J. Phys. Chem. Ref. Data
,
27
, pp.
63
96
.
27.
Mclinden
,
M. O.
,
Klein
,
S. A.
,
Lemmon
,
E. W.
, and
Peskin
,
A. P.
, 2005, NIST Standard Reference Database 23, NIST Thermodynamic and Transport Properties of Refrigerants and Refrigerant Mixtures-REFPROP Version 7.0, Standard Reference Data Program, National Institute of Standards and Technology.
28.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
, 2003, “
On Evaluating Efficiency of a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
125
, pp.
221
227
.
29.
Cengel
,
Y.
, and
Boles
,
M.
, 1994.
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
.
30.
Coello
,
C. A.
,
Dhaenens
,
C.
, and
Jourdan
,
L.
, 2010,
Advances in Multi-Objective Nature Inspired Computing
,
Springer Verlag
,
Berlin-Heidelberg
.
31.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
, 2002, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
You do not currently have access to this content.