Gasoline compression ignition (GCI) is a low temperature combustion (LTC) concept that has been gaining increasing interest over the recent years owing to its potential to achieve diesel-like thermal efficiencies with significantly reduced engine-out nitrogen oxides (NOx) and soot emissions compared to diesel engines. In this work, closed-cycle computational fluid dynamics (CFD) simulations are performed of this combustion mode using a sector mesh in an effort to understand effects of model settings on simulation results. One goal of this work is to provide recommendations for grid resolution, combustion model, chemical kinetic mechanism, and turbulence model to accurately capture experimental combustion characteristics. Grid resolutions ranging from 0.7 mm to 0.1 mm minimum cell sizes were evaluated in conjunction with both Reynolds averaged Navier–Stokes (RANS) and large eddy simulation (LES) based turbulence models. Solution of chemical kinetics using the multizone approach is evaluated against the detailed approach of solving chemistry in every cell. The relatively small primary reference fuel (PRF) mechanism (48 species) used in this study is also evaluated against a larger 312-species gasoline mechanism. Based on these studies, the following model settings are chosen keeping in mind both accuracy and computation costs—0.175 mm minimum cell size grid, RANS turbulence model, 48-species PRF mechanism, and multizone chemistry solution with bin limits of 5 K in temperature and 0.05 in equivalence ratio. With these settings, the performance of the CFD model is evaluated against experimental results corresponding to a low load start of injection (SOI) timing sweep. The model is then exercised to investigate the effect of SOI on combustion phasing with constant intake valve closing (IVC) conditions and fueling over a range of SOI timings to isolate the impact of SOI on charge preparation and ignition. Simulation results indicate that there is an optimum SOI timing, in this case −30 deg aTDC (after top dead center), which results in the most stable combustion. Advancing injection with respect to this point leads to significant fuel mass burning in the colder squish region, leading to retarded phasing and ultimately misfire for SOI timings earlier than −42 deg aTDC. On the other hand, retarding injection beyond this optimum timing results in reduced residence time available for gasoline ignition kinetics, and also leads to retarded phasing, with misfire at SOI timings later than −15 deg aTDC.

References

1.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,”
SAE
Technical Paper No. 2009-01-0944.10.4271/2009-01-0944
2.
Manente
,
V.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W. J.
,
2010
, “
Influence of Inlet Pressure, EGR, Combustion Phasing, Speed and Pilot Ratio on High Load Gasoline Partially Premixed Combustion
,”
SAE
Technical Paper No. 2010-01-1471.10.4271/2010-01-1471
3.
Solsjö
,
R.
,
Jangi
,
M.
,
Turner
,
M.
, and
Bai
,
X.-S.
,
2012
, “
Large Eddy Simulation of Partially Premixed Combustion in an Internal Combustion Engine
,”
SAE
Technical Paper No. 2012-01-0139.10.4271/2012-01-0139
4.
Borgqvist
,
P.
,
Andersson
,
Ö.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2013
, “
The Low Load Limit of Gasoline Partially Premixed Combustion Using Negative Valve Overlap
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
062002
.10.1115/1.4023613
5.
Manente
,
V.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2011
, “
Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?
,”
Int. J. Engine Res.
,
12
(
3
), pp.
194
208
.10.1177/1468087411402441
6.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2010
, “
Characterization of Partially Premixed Combustion With Ethanol: EGR Sweeps, Low and Maximum Loads
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082802
.10.1115/1.4000291
7.
Opat
,
R.
,
Ra
,
Y.
,
Gonzalez
,
M. A.
,
Krieger
,
R.
,
Reitz
,
R. D.
,
Foster
,
D. E.
,
Durrett
,
R. P.
, and
Siewert
,
R. M.
,
2007
, “
Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine
,”
SAE
Technical Paper No. 2007-01-0193.10.4271/2007-01-0193
8.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,”
SAE
Technical Paper No. 2009-01-1442.10.4271/2009-01-1442
9.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D.
,
Reitz
,
R.
, and
Durrett
,
R.
,
2012
, “
Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection
,”
SAE
Technical Paper No. 2012-01-1131.10.4271/2012-01-1131
10.
Adhikary
,
B. D.
,
Ra
,
Y.
,
Reitz
,
R.
, and
Ciatti
,
S.
,
2012
, “
Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline
,”
SAE
Technical Paper No. 2012-01-1336.10.4271/2012-01-1336
11.
Ciatti
,
S.
,
Johnson
,
M.
,
Adhikary
,
B. D.
,
Reitz
,
R.
, and
Knock
,
A.
,
2013
, “
Efficiency and Emissions performance of Multizone Stratified Compression Ignition Using Different Octane Fuels
,”
SAE
Technical Paper No. 2013-01-0263.10.4271/2013-01-0263
12.
Adhikary
,
B. D.
,
Reitz
,
R.
, and
Ciatti
,
S.
,
2013
, “
Study of In-Cylinder Combustion and Multi-Cylinder Light Duty Compression Ignition Engine Performance Using Different RON Fuels at Light Load Conditions
,”
SAE
Technical Paper No. 2013-01-0900.10.4271/2013-01-0900
13.
Kolodziej
,
C.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,” SAE Technical Paper No. 2015-01-0832.
14.
Kolodziej
,
C.
,
Ciatti
,
S.
,
Vuilleumier
,
D.
,
Adhikary
,
B. D.
, and
Reitz
,
R.
,
2014
, “
Extension of the Lower Load Limit of Gasoline Compression Ignition With 87 AKI Gasoline by Injection Timing and Pressure
,”
SAE
Technical Paper No. 2014-01-1302.10.4271/2014-01-1302
15.
Ra
,
Y.
,
Yun
,
J. E.
, and
Reitz
,
R. D.
,
2009
, “
Numerical Parametric Study of Diesel Engine Operation With Gasoline
,”
Combust. Sci. Technol.
,
181
(
2
), pp.
350
378
.10.1080/00102200802504665
16.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2011
, “
Gasoline Direct Injection Compression Ignition (GDCI)—Diesel-Like Efficiency With Low CO2 Emissions
,”
SAE
Technical Paper No. 2011-01-1386.10.4271/2011-01-1386
17.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2012
, “
Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM
,”
SAE
Technical Paper No. 2012-01-0384.10.4271/2012-01-0384
18.
Kalghatgi
,
G. T.
,
Risberg
,
P.
, and
Ångström
,
H.-E.
,
2006
, “
Advantages of Fuels With High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion
,”
SAE
Technical Paper No. 2006-01-3385.10.4271/2006-01-3385
19.
Kalghatgi
,
G. T.
,
Risberg
,
P.
, and
Ångström
,
H.-E.
,
2007
, “
Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison With a Diesel Fuel
,”
SAE
Technical Paper No. 2007-01-0006.10.4271/2007-01-0006
20.
Hildingsson
,
L.
,
Kalghatgi
,
G.
,
Tait
,
N.
,
Johansson
,
B.
, and
Harrison
,
A.
,
2009
, “
Fuel Octane Effects in the Partially Premixed Combustion Regime in Compression Ignition Engines
,”
SAE
Technical Paper No. 2009-01-2648.10.4271/2009-01-2648
21.
Zhang
,
F.
,
Xu
,
H.
,
Zhang
,
J.
,
Tian
,
G.
, and
Kalghatgi
,
G.
,
2011
, “
Investigation Into Light Duty Dieseline Fuelled Partially-Premixed Compression Ignition Engine
,”
SAE
Technical Paper No. 2011-01-1411.10.4271/2011-01-1411
22.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
,
Adomeit
,
P.
,
Rohs
,
H.
, and
Benedikt
,
H.
,
2013
, “
Vehicle Demonstration of Naphtha Fuel Achieving Both High Efficiency and Drivability With EURO6 Engine-Out NOx Emission
,”
SAE
Technical Paper No. 2013-01-0267.10.4271/2013-01-0267
23.
Won
,
H. W.
,
Peters
,
N.
,
Pitsch
,
H.
,
Tait
,
N.
, and
Kalghatgi
,
G.
,
2013
, “
Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine
,”
SAE
Technical No. 2013-01-2539.10.4271/2013-01-2539
24.
Onishi
,
S.
,
Jo
,
S. H.
,
Shoda
,
K.
,
Jo
,
P. D.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
,”
SAE
Technical Paper No. 790501.10.4271/790501
25.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion
,”
SAE
Technical Paper No. 790840.10.4271/790840
26.
Najt
,
P. M.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Technical Paper No. 830264.10.4271/830264
27.
Thring
,
R. H.
,
1989
, “
Homogeneous-Charge Compression-Ignition (HCCI) Engines
,”
SAE
Technical Paper No. 892068.10.4271/892068
28.
Iwabuchi
,
Y.
,
Kawai
,
K.
,
Shoji
,
T.
, and
Takeda
,
Y.
,
1999
, “
Trial of New Concept Diesel Combustion System—Premixed Compression-Ignited Combustion
,”
SAE
Technical Paper No. 1999-01-0185.10.4271/1999-01-0185
29.
Kimura
,
S.
,
Aoki
,
O.
,
Ogawa
,
H.
,
Muranaka
,
S.
, and
Enomoto
,
Y.
,
1999
, “
New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines
,”
SAE
Technical Paper No. 1999-01-3681.10.4271/1999-01-3681
30.
Noda
,
T.
, and
Foster
,
D. E.
,
2001
, “
A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation
,”
SAE
Technical Paper No. 2001-01-0250.10.4271/2001-01-0250
31.
Fiveland
,
S. B.
, and
Assanis
,
D. N.
,
2001
, “
Modeling of HCCI Combustion and Emissions Using Detailed Chemistry
,”
SAE
Technical Paper No. 2001-01-1029.10.4271/2001-01-1029
32.
Kodavasal
,
J.
,
McNenly
,
M. J.
,
Babajimopoulos
,
A.
,
Aceves
,
S. M.
,
Assanis
,
D. N.
,
Havstad
,
M. A.
, and
Flowers
,
D. L.
,
2013
, “
An Accelerated Multi-Zone Model for Engine Cycle Simulation of Homogeneous Charge Compression Ignition Combustion
,”
Int. J. Engine Res.
,
14
(
5
), pp.
416
433
.10.1177/1468087413482480
33.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2014
, CONVERGE (Version 2.2.0) Manual, Convergent Science, Inc., Madison, WI.
34.
Som
,
S.
,
2009
, “
Development and Validation of Spray Models for Investigating Diesel Engine Combustion and Emissions
,” Ph.D. thesis, University of Illinois at Chicago, Chicago, IL.
35.
Reitz
,
R.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Technical Paper No. 870598.10.4271/870598
36.
Senecal
,
P.
,
Richards
,
K.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE
Technical Paper No. 2007-01-0159.10.4271/2007-01-0159
37.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.10.1006/jcph.2000.6568
38.
Liu
,
A.
,
Mather
,
D.
, and
Reitz
,
R.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Technical Paper No. 930072.10.4271/930072
39.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Report No. LA-11560-MS.
40.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flam Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Technical Paper No. 2003-01-1043.10.4271/2003-01-1043
41.
Som
,
S.
,
Longman
,
D.
,
Aithal
,
S.
,
Bair
,
R.
,
Garcia
,
M.
,
Quan
,
S.
,
Richards
,
K. J.
,
Senecal
,
P. K.
,
Shethaji
,
T.
, and
Weber
,
M.
,
2013
, “
A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1095.10.4271/2013-01-1095
42.
Catania
,
A. E.
,
Ferrari
,
A.
,
Manno
,
M.
, and
Spessa
,
E.
,
2008
, “
Experimental Investigation of Dynamics Effects on Multiple-Injection Common Rail System Performance
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032806
.10.1115/1.2835353
43.
Liu
,
Y.-D.
,
Jia
,
M.
,
Xie
,
M.-Z.
, and
Pang
,
B.
,
2013
, “
Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel With Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation
,”
Energy Fuels
,
27
(
8
), pp.
4899
4909
.10.1021/ef4009955
44.
Kodavasal
,
J.
,
2013
, “
Effect of Charge Preparation Strategy on HCCI Combustion
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
45.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.10.1243/146808705X30503
46.
Kodavasal
,
J.
,
Keum
,
S. H.
, and
Babajimopoulos
,
A.
,
2011
, “
An Extended Multi-Zone Combustion Model for PCI Simulation
,”
Combust. Theor. Model.
,
15
(
6
), pp.
893
910
.10.1080/13647830.2011.578663
47.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
Large Eddy Simulation of Fuel Spray Under Non-Reacting IC Engine Conditions
,”
Atomization Sprays
,
23
(
10
), pp.
925
955
.10.1615/AtomizSpr.2013008320
48.
Mehl
,
M.
,
Chen
,
J.-Y.
,
Pitz
,
W. J.
,
Sarathy
,
S. M.
, and
Westbrook
,
C. K.
,
2011
, “
An Approach for Formulating Surrogates for Gasoline With Application Toward a Reduced Surrogate Mechanism for CFD Engine Modeling
,”
Energy Fuels
,
25
(
11
), pp.
5215
5223
.10.1021/ef201099y
49.
Zhang
,
Y. Z.
,
Kung
,
E. H.
, and
Haworth
,
D. C.
,
2005
, “
A PDF Method for Multidimensional Modeling of HCCI Engine Combustion: Effects of Turbulence/Chemistry Interactions on Ignition Timing and Emissions
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2763
2771
.10.1016/j.proci.2004.08.236
50.
Bhattacharjee
,
S.
, and
Haworth
,
D. C.
,
2013
, “
Simulations of Transient n-Heptane and n-Dodecane Spray Flames Under Engine-Relevant Conditions Using a Transported PDF Method
,”
Combust. Flame
,
160
(
10
), pp.
2083
2102
.10.1016/j.combustflame.2013.05.003
51.
Pei
,
Y.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2013
, “
Transported Probability Density Function Modelling of the Vapour Phase of an n-Heptane Jet at Diesel Engine Conditions
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3039
3047
.10.1016/j.proci.2012.07.033
52.
Pei
,
Y.
,
Hawkes
,
E. R.
, and
Kook
,
S.
,
2013
, “
A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-Heptane Jet Ignitions With the PDF Method
,”
Flow, Turb. Combust.
,
91
(
2
), pp.
249
280
.10.1007/s10494-013-9454-z
53.
Pei
,
Y.
,
Hawkes
,
E. R.
,
Kook
,
S.
,
Goldin
,
G.
, and
Lu
,
T.
, 2015, “
Modelling n-Dodecane Spray and Combustion With the Transported Probability Density Function Method
,”
Combust. Flame
(in press).10.1016/j.combustflame.2014.12.019
54.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effect of Diluent Composition on Homogeneous Charge Compression Ignition Auto-Ignition and Combustion Duration
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3019
3026
.10.1016/j.proci.2014.06.152
55.
Goldsborough
,
S. S.
,
2009
, “
A Chemical Kinetically Based Ignition Delay Correlation for Iso-Octane Covering a Wide Range of Conditions Including the NTC Region
,”
Combust. Flame
,
156
(
6
), pp.
1248
1262
.10.1016/j.combustflame.2009.01.018
56.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2014
, “
Reaction-Space Analysis of Premixed and Direct Injected Fueling in the Context of Homogeneous Charge Compression Ignition Combustion Under Positive and Negative Valve Overlap Conditions
,”
Spring Meeting of the Central States Section of the Combustion Institute
, Tulsa, OK.
57.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effects of Thermal and Compositional Stratification on the Ignition and Duration of Homogeneous Charge Compression Ignition Combustion
,”
Combust. Flame
,
162
(
2
), pp.
451
461
.10.1016/j.combustflame.2014.07.026
You do not currently have access to this content.