Abstract

In internal combustion engines (ICE), a major part of the generated energy via burning the fuel is wasted. The cooling fluid controlling the temperature, the reclaimed hot gases for reducing the environmental impacts, and the hot combustion productions leaving the engine from the exhaust are the main origins of energy waste in such a machine. Waste heat recovery and flue gas condensation are the methods by which the overall efficiency of a thermal engine is enhanced, and its environmental impacts are mitigated. In this paper, the utilization of the exhaust waste energy of ICE by using a heat exchanger with nanofluid and helical tape, in order to augment the thermal performance of the engine and reduce its environmental impact, is investigated numerically. In this heat exchanger, the flue gas of the engine at high temperature and H2O-CuO nanofluid are considered as the primary and secondary working fluids, and the twisted tape makes the flow further disturbed so that a larger overall heat transfer coefficient is obtained. The finite volume method has been applied to scrutinize the impacts of Reynolds number as well as the twisting-tape turns number on the operation and performance of the tube. As such, suitable correlations for the prediction of some of the thermos-physical parameters of the problem (such as Nusselt number and Darcy factor) are extracted regarding the obtained data. The results of the study reveal that Nusselt number is higher for larger numbers of the tape turn and higher Reynolds numbers, while a lower friction factor is achieved as the number of the turns is reduced.

References

References
1.
Arabkoohsar
,
A.
,
Gharahchomaghloo
,
Z.
,
Farzaneh-Gord
,
M.
,
Koury
,
R. N. N.
, and
Deymi-Dashtebayaz
,
M.
,
2017
, “
An Energetic and Economic Analysis of Power Productive Gas Expansion Stations for Employing Combined Heat and Power
,”
Energy
,
133
, pp.
737
748
. 10.1016/j.energy.2017.05.163
2.
Wu
,
W.-D.
,
Zhang
,
H.
, and
Men
,
C.
,
2011
, “
Performance of a Modified Zeolite 13X-Water Adsorptive Cooling Module Powered by Exhaust Waste Heat
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
2042
2049
. 10.1016/j.ijthermalsci.2011.05.005
3.
Sezer
,
İ
,
2011
, “
Thermodynamic, Performance and Emission Investigation of a Diesel Engine Running on Dimethyl Ether and Diethyl Ether
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1594
1603
. 10.1016/j.ijthermalsci.2011.03.021
4.
Aghaali
,
H.
, and
Ångström
,
H.-E.
,
2015
, “
A Review of Turbocompounding as a Waste Heat Recovery System for Internal Combustion Engines
,”
Renew. Sustain. Energy Rev.
,
49
(
2
), pp.
813
824
. 10.1016/j.rser.2015.04.144
5.
Hountalas
,
E. D. R. D. T.
,
Katsanos
,
C. O.
, and
Kouremenos
,
D. A.
,
2007
, “
Study of Available Exhaust Gas Heat Recovery Technologies for HD Diesel Engine Applications
,”
Int. J. Altern. Propuls.
,
1
(
2–3
), pp.
228
249
. 10.1504/IJAP.2007.013019
6.
Katsanos
,
C. O.
,
Hountalas
,
D. T.
, and
Pariotis
,
E. G.
,
2012
, “
Thermodynamic Analysis of a Rankine Cycle Applied on a Diesel Truck Engine Using Steam and Organic Medium
,”
Energy Convers. Manag.
,
60
(
2
), pp.
68
76
. 10.1016/j.enconman.2011.12.026
7.
Shi
,
L.
,
Shu
,
G.
,
Tian
,
H.
, and
Deng
,
S.
,
2018
, “
A Review of Modified Organic Rankine Cycles (ORCs) for Internal Combustion Engine Waste Heat Recovery (ICE-WHR)
,”
Renew. Sustain. Energy Rev.
,
92
(
2
), pp.
95
110
. 10.1016/j.rser.2018.04.023
8.
Ge
,
Z.
,
Li
,
J.
,
Liu
,
Q.
,
Duan
,
Y.
, and
Yang
,
Z.
,
2018
, “
Thermodynamic Analysis of Dual-Loop Organic Rankine Cycle Using Zeotropic Mixtures for Internal Combustion Engine Waste Heat Recovery
,”
Energy Convers. Manag.
,
166
(
2
), pp.
201
214
. 10.1016/j.enconman.2018.04.027
9.
Karvonen
,
M.
,
Kapoor
,
R.
,
Uusitalo
,
A.
, and
Ojanen
,
V.
,
2016
, “
Technology Competition in the Internal Combustion Engine Waste Heat Recovery: A Patent Landscape Analysis
,”
J. Clean. Prod.
,
112
(
2
), pp.
3735
3743
. 10.1016/j.jclepro.2015.06.031
10.
Deymi-Dashtebayaz
,
M.
,
Akhoundi
,
M.
,
Ebrahimi-Moghadam
,
A.
,
Arabkoohsar
,
A.
,
Jabari Moghadam
,
A.
, and
Farzaneh-Gord
,
M.
,
2020
, “
Thermo-Hydraulic Analysis and Optimization of CuO/Water Nanofluid Inside Helically Dimpled Heat Exchangers
,”
J. Therm. Anal. Calorim.
,
139
(
2
). 10.1007/s10973-020-09398-0
11.
Rashidi
,
S.
,
Shamsabadi
,
H.
,
Esfahani
,
J. A.
, and
Harmand
,
S.
,
2020
, A “
Review on Potentials of Coupling PCM Storage Modules to Heat Pipes and Heat Pumps
,”
J. Therm. Anal. Calorim
.
12.
Rashidi
,
S.
,
Hormozi
,
F.
,
Sundén
,
B.
, and
Mahian
,
O.
,
2019
, “
Energy Saving in Thermal Energy Systems Using Dimpled Surface Technology—A Review on Mechanisms and Applications
,”
Appl. Energy
,
250
(
4
), pp.
1491
1547
. 10.1016/j.apenergy.2019.04.168
13.
Rashidi
,
S.
,
Yang
,
L.
,
Khoosh-Ahang
,
A.
,
Jing
,
D.
, and
Mahian
,
O.
,
2020
, “
Entropy Generation Analysis of Different Solar Thermal Systems
,”
Environ. Sci. Pollut. Res.
,
27
(
17
), pp.
20699
20724
. 10.1007/s11356-020-08472-2
14.
Rashidi
,
S.
,
Kashefi
,
M. H.
,
Kim
,
K. C.
, and
Samimi-Abianeh
,
O.
,
2019
, “
Potentials of Porous Materials for Energy Management in Heat Exchangers—A Comprehensive Review
,”
Appl. Energy
,
243
(
4
), pp.
206
232
. 10.1016/j.apenergy.2019.03.200
15.
Guthrie
,
D. G. P.
,
Torabi
,
M.
, and
Karimi
,
N.
,
2019
, “
Combined Heat and Mass Transfer Analyses in Catalytic Microreactors Partially Filled With Porous Material—The Influences of Nanofluid and Different Porous-Fluid Interface Models
,”
Int. J. Therm. Sci.
,
140
(
4
), pp.
96
113
. 10.1016/j.ijthermalsci.2019.02.037
16.
Akbarzadeh
,
M.
,
Rashidi
,
S.
,
Karimi
,
N.
, and
Ellahi
,
R.
,
2018
, “
Convection of Heat and Thermodynamic Irreversibilities in Two-Phase, Turbulent Nanofluid Flows in Solar Heaters by Corrugated Absorber Plates
,”
Adv. Powder Technol.
,
29
(
9
), pp.
2243
2254
. 10.1016/j.apt.2018.06.009
17.
Ul Haq
,
R.
,
Nadeem
,
S.
, Khan
,
Z. H.
, and
Noor
,
N.F.M.
,
2015
, “
Convective Heat Transfer in MHD Slip Flow Over a Stretching Surface in the Presence of Carbon Nanotubes
,”
Phys. B Condens. Matter
,
457
(
3
), pp.
40
47
. 10.1016/j.physb.2014.09.031
18.
Ul Haq
,
R.
,
Shahzad
,
F.
, and
Al-Mdallal
,
Q. M.
,
2017
, “
MHD Pulsatile Flow of Engine Oil Based Carbon Nanotubes Between Two Concentric Cylinders
,”
Results Phys.
,
7
(
3
), pp.
57
68
. 10.1016/j.rinp.2016.11.057
19.
Tripathi
,
R.
,
Seth
,
G. S.
, and
Mishra
,
M. K.
,
2017
, “
Double Diffusive Flow of a Hydromagnetic Nanofluid in a Rotating Channel With Hall Effect and Viscous Dissipation: Active and Passive Control of Nanoparticles
,”
Adv. Powder Technol.
,
28
(
10
), pp.
2630
2641
. 10.1016/j.apt.2017.07.015
20.
Solangi
,
K. H.
,
Kazi
,
S. N.
,
Luhur
,
M. R.
,
Badarudin
,
A.
,
Amiri
,
A.
,
Sadri
,
R.
,
Zubir
,
M. N. M.
,
Gharehkhani
,
S.
, and
Teng
,
K. H.
,
2015
, “
A Comprehensive Review of Thermo-Physical Properties and Convective Heat Transfer to Nanofluids
,”
Energy
,
89
(
5
), pp.
1065
1086
. 10.1016/j.energy.2015.06.105
21.
Bianco
,
V.
,
Manca
,
O.
, and
Nardini
,
S.
,
2014
, “
Performance Analysis of Turbulent Convection Heat Transfer of Al2O3 Water-Nanofluid in Circular Tubes at Constant Wall Temperature
,”
Energy
,
77
(
5
), pp.
403
413
. 10.1016/j.energy.2014.09.025
22.
Kumar
,
V.
,
Tiwari
,
A. K.
, and
Ghosh
,
S. K.
,
2016
, “
Effect of Variable Spacing on Performance of Plate Heat Exchanger Using Nanofluids
,”
Energy
,
114
(
5
), pp.
1107
1119
. 10.1016/j.energy.2016.08.091
23.
Arabkoohsar
,
A.
, and
Andresen
,
G. B.
,
2017
, “
Dynamic Energy, Exergy and Market Modeling of a High Temperature Heat and Power Storage System
,”
Energy
,
126
(
5
), pp.
430
443
. 10.1016/j.energy.2017.03.065
24.
Said
,
Z.
,
Rahman
,
S. M. A.
,
Assad
,
M. E. H.
, and
Alami
,
A. H.
,
2019
, “
Heat Transfer Enhancement and Life Cycle Analysis of a Shell-and-Tube Heat Exchanger Using Stable CuO/water Nanofluid
,”
Sustainable Energy Technol. Assess.
,
31
(
1
), pp.
306
317
.
25.
Kim
,
S. M. D.
,
Kwon
,
Y.
,
Cho
,
Y.
,
Li
,
C.
,
Cheong
,
S.
,
Hwang
,
Y.
,
Lee
,
J.
, and
Hong
,
D.
,
2009
, “
Convective Heat Transfer Characteristics of Nanofluids Under Laminar and Turbulent Flow Conditions
,”
Curr. Appl. Phys.
,
9
(
2
), pp.
e119
e123
. 10.1016/j.cap.2008.12.047
26.
Sheikholeslami
,
M.
,
Arabkoohsar
,
A.
, and
Ismail
,
K. A. R.
,
2020
, “
Entropy Analysis for a Nanofluid Within a Porous Media With Magnetic Force Impact Using Non-Darcy Model
,”
Int. Commun. Heat Mass Transf.
,
112
(
2
), p.
104488
. 10.1016/j.icheatmasstransfer.2020.104488
27.
Arabkoohsar
,
A.
,
Khosravi
,
M.
, and
Alsagri
,
A. S.
,
2020
, “
Effect of Various Twisted-Tape Designs on the Thermal and Environmental Performance of Line-Heaters in City Gate Stations
,”
Int. J. Heat Mass Transf.
,
148
(
2
), p.
119123
. 10.1016/j.ijheatmasstransfer.2019.119123
You do not currently have access to this content.