Abstract

In this paper, a new and pragmatic technique has been developed to identify pore types and characterize porosities of shales with various origins. By comparing the genesis of pore types (i.e., organic, brittle, and clay mineral porosities) in shales, the corresponding pore volumes per unit mass are determined as a function of the total porosity, density, and the content of each pore type from core samples. Subsequently, a new inverse framework was proposed and successfully applied to quantify different types of porosities in the Silurian Longmaxi formation shale in the Zhaotong area. The pore volume per unit mass of organic matter is calculated to be around 0.185–0.190 cm3/g, which is 10–21 and 8–19 times more than that of brittle mineral and clay mineral, respectively, indicating that pore space of organic matter contributes greater to the total porosity than that of the clay and brittle minerals. Using single well data, the porosity in organic matter is found to follow the same pattern as the total porosity in the vertical direction. Such an identified porosity type leads to more accurate sweet spots as well as more appropriate drilling locations for horizontal wells in shale reservoirs.

References

1.
Manrique
,
M.
,
Thomas
,
C.
,
Ravikiran
,
R.
,
Kamouei
,
M. I.
,
Lantz
,
M.
,
Romero
,
J. L.
, and
Alvarado
,
V.
,
2010
, “
EOR: Current Status and Opportunities
,”
Paper SPE-130113-MS, Presented at the SPE Improved Oil Recovery Symposium
,
Tulsa, OK
,
Apr. 24–28
.
2.
Hejazi
,
S. H.
,
Assef
,
Y.
,
Tavallali
,
M.
, and
Popli
,
A.
,
2017
, “
Cyclic CO2-EOR in the Bakken Formation: Variable Cycle Sizes and Coupled Reservoir Response Effects
,”
Fuel
,
210
, pp.
758
767
.
3.
Jiang
,
L.
,
Liu
,
T.
, and
Yang
,
D.
,
2019
, “
Effect of Stress-Sensitive Fracture Conductivity on Transient Pressure Behaviour for a Horizontal Well With Multistage Fractures
,”
SPE J.
,
24
(
3
), pp.
1342
1363
.
4.
Jiang
,
L.
,
Liu
,
J.
,
Liu
,
T.
, and
Yang
,
D.
,
2020
, “
A Semianalytical Model for Transient Pressure Analysis of a Horizontal Well With Non-Uniform Fracture Geometry and Shape-Dependent Conductivity in Tight Formations
,”
J. Pet. Sci. Eng.
,
195
, p.
107860
.
5.
Jiang
,
L.
,
Liu
,
J.
,
Liu
,
T.
, and
Yang
,
D.
,
2021
, “
Semi-Analytical Modeling of Transient Pressure Behaviour for Fractured Horizontal Wells in a Tight Formation With Fractal-Like Discrete Fracture Network
,”
J. Pet. Sci. Eng.
,
197
, p.
107937
.
6.
Burrows
,
L. C.
,
Haeri
,
F.
,
Sanguinito
,
S.
,
Shi
,
P.
,
Goodman
,
A.
, and
Enick
,
R. M.
,
2020
, “
A Literature Review of CO2, Natural Gas, and Water-Based Fluids for Enhanced Oil Recovery in Unconventional Reservoirs
,”
Energy Fuels
,
34
(
5
), pp.
5331
5380
.
7.
Liu
,
G.
,
Bai
,
Y.
,
Gu
,
D.
,
Lu
,
Y.
, and
Yang
,
D.
,
2018
, “
Determination of Static and Dynamic Characteristics of Microscopic Pore-Throat Structure in a Tight Oil-Bearing Sandstone Formation
,”
AAPG Bull.
,
102
(
9
), pp.
1867
1892
.
8.
Liu
,
G.
,
Yin
,
H.
,
Lan
,
Y.
,
Fei
,
S.
, and
Yang
,
D.
,
2020
, “
Experimental Determination of Dynamic Pore-Throat Structure With Consideration of Effective Stress
,”
Mar. Pet. Geol.
,
113
, p.
104170
.
9.
Jiang
,
L.
,
Liu
,
T.
, and
Yang
,
D.
,
2019
, “
A Semi-Analytical Model for Predicting Transient Pressure Behaviour of a Hydraulically Fractured Horizontal Well in Naturally Fractured Reservoirs With Non-Darcy Flow and Stress-Sensitive Permeability Effects
,”
SPE J.
,
24
(
3
), pp.
1322
1341
.
10.
Jiang
,
L.
,
Liu
,
J.
,
Liu
,
T.
, and
Yang
,
D.
,
2020
, “
Semi-Analytical Modeling of Transient Rate Behaviour of a Horizontal Well With Multistage Fractures in Tight Formations Considering Stress-Sensitivity Effect
,”
J. Nat. Gas Sci. Eng.
,
82
, p.
103461
.
11.
Tian
,
L.
,
Feng
,
B.
,
Zheng
,
S.
,
Gu
,
D.
,
Ren
,
X.
, and
Yang
,
D.
,
2019
, “
Performance Evaluation of Gas Production With Consideration of Dynamic Capillary Pressure in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022902
.
12.
Liu
,
X.
, and
Yang
,
D.
,
2020
, “
Simultaneous Interpretation of Three-Phase Relative Permeability and Capillary Pressure for a Tight Carbonate Reservoir From Wireline Formation Testing
,”
ASME J. Energy Resour. Technol.
,
142
(
6
), p.
063001
.
13.
Qiu
,
Z.
, and
Zou
,
C.
,
2020
, “
Controlling Factors on the Formation and Distribution of “Sweet-Spot Areas” of Marine Gas Shales in South China and a Preliminary Discussion on Unconventional Petroleum Sedimentology
,”
J. Asian Earth Sci.
,
194
, pp.
103
109
.
14.
Yang
,
D.
,
Song
,
C.
,
Zhang
,
J.
,
Zhang
,
G.
,
Ji
,
Y.
, and
Gao
,
J.
,
2015
, “
Performance Evaluation of Injectivity for Water-Alternating-CO2 Processes in Tight Oil Formations
,”
Fuel
,
139
(
1
), pp.
292
300
.
15.
Song
,
C.
, and
Yang
,
D.
,
2017
, “
Experimental and Numerical Evaluation of CO2 Huff-n-Puff Processes in Bakken Formation
,”
Fuel
,
190
(
4
), pp.
145
162
.
16.
Liu
,
G.
,
Meng
,
Z.
,
Li
,
X.
,
Gu
,
D.
,
Yang
,
D.
, and
Yin
,
H.
,
2019
, “
Experimental and Numerical Evaluation of Water Control and Production Increase in a Tight Gas Formation With Polymer
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102903
.
17.
Zhao
,
M.
,
Zhao
,
X.
, and
Yang
,
D.
,
2018
, “
Preparation and Characterization of Chemical Agents for Augmenting Injectivity in Low Permeability Reservoirs
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032914
.
18.
Mogensen
,
K.
, and
Masalmeh
,
S.
,
2020
, “
A Review of EOR Techniques for Carbonate Reservoirs in Challenging Geological Settings
,”
J. Pet. Sci. Eng.
,
195
, p.
107889
.
19.
Nie
,
H.
,
Li
,
D.
,
Liu
,
G.
,
Lu
,
Z.
,
Wang
,
H.
,
Wang
,
R.
, and
Zhang
,
G.
,
2020
, “
An Overview of the Geology and Production of the Fuling Shale Gas Field, Sichuan Basin
,”
China Energy Geosci.
,
1
(
3
), pp.
147
164
.
20.
Luffel
,
D.
, and
Guidry
,
F.
,
1992
, “
New Core Analysis Methods for Measuring Reservoir Rock Properties of Devonian Shale
,”
J. Pet. Technol.
,
44
(
11
), pp.
1184
1190
.
21.
Luffel
,
D.
,
Guidry
,
F.
, and
Curtis
,
J.
,
1992
, “
Evaluation of Devonian Shale With New Core and Log Analysis Methods
,”
J. Pet. Technol.
,
44
(
11
), pp.
1192
1197
.
22.
Sun
,
J.
,
Dong
,
X.
,
Wang
,
J.
,
Schmitt
,
D. R.
,
Xu
,
C.
,
Mohammed
,
T.
, and
Chen
,
D.
,
2016
, “
Measurement of Total Porosity for Gas Shales by Gas Injection Porosimetry (GIP) Method
,”
Fuel
,
186
, pp.
694
707
.
23.
Kuila
,
U.
,
McCarty
,
D. K.
,
Derkowski
,
A.
,
Fischer
,
T. B.
, and
Prasad
,
M.
,
2014
, “
Total Porosity Measurement in Gas Shales by the Water Immersion Porosimetry (WIP) Method
,”
Fuel
,
117
, pp.
1115
1129
.
24.
Topór
,
T.
,
Derkowski
,
A.
,
Kuila
,
U.
,
Fischer
,
T. B.
, and
McCarty
,
D. K.
,
2016
, “
Dual Liquid Porosimetry: A Porosity Measurement Technique for Oil- and Gas-Bearing Shales
,”
Fuel
,
183
, pp.
537
549
.
25.
Sun
,
J.
,
Zong
,
C.
,
Dong
,
X.
,
Liu
,
H.
, and
Zhang
,
Z.
,
2017
, “
Study on Porosity of Shale Comminuted Samples Based on NMR
,”
Logging Technol.
,
41
(
5
), pp.
512
516
.
26.
Hu
,
H.
,
Zhang
,
T.
,
Wiggins-Camacho
,
J. D.
,
Ellis
,
G. S.
,
Lewan
,
M. D.
, and
Zhang
,
X.
,
2015
, “
Experimental Investigation of Changes in Methane Adsorption of Bitumen-Free Woodford Shale With Thermal Maturation Induced by Hydrous Pyrolysis
,”
Mar. Pet. Geol.
,
59
, pp.
114
128
.
27.
Raza
,
S. S.
,
Rudolph
,
V.
,
Rufford
,
T.
, and
Chen
,
Z.
,
2019
, “
A Stochastic Anisotropic Coal Permeability Model Using Mercury Intrusion Porosimetry (MIP) and Stress–Strain Measurements
,”
Paper URTEC-198260-MS, Presented at the SPE/AAPG/SEG Asia Pacific Unconventional Resources Technology Conference
,
Brisbane, Australia
,
Nov. 18–19
.
28.
Edwin
,
O.
, and
Carlos
,
T.
,
2015
, “
New Analytical Method to Calculate Matrix- and Fluid-Corrected Total Porosity in Organic Shale
,”
SPE Reserv. Eval. Eng.
,
18
(
4
), pp.
609
623
.
29.
Venkataramanan
,
L.
,
Gruber
,
F. K.
,
Lavigne
,
J.
,
Habashy
,
T. M.
,
Iglesias
,
J. G.
,
Cohorn
,
P.
,
Anand
,
V.
,
Rampurawala
,
M. A.
,
Jain
,
V.
,
Heaton
,
N.
,
Akkurt
,
R.
,
Rylander
,
E.
, and
Lewis
,
R.
,
2015
, “
New Method to Estimate Porosity More Accurately From NMR Data With Short Relaxation Times
,”
Petrophysics
,
56
(
2
), pp.
147
157
.
30.
Li
,
J.
,
Wu
,
Q.
,
Lu
,
J.
, and
Jin
,
W.
,
2017
, “
Measurement and Logging Evaluation of Total Porosity and Effective Porosity of Shale Gas Reservoir
,”
Petrol. Nat. Gas Geol.
,
38
(
3
), pp.
602
609
.
31.
Craddock
,
P. R.
,
Mossé
,
L.
,
Bernhardt
,
C.
,
Ortiz
,
A. C.
,
Tomassini
,
F. G.
,
Pirie
,
I. C.
,
Saldungaray
,
P.
, and
Pomerantz
,
A. E.
,
2018
, “
Matrix-Adjusted Shale Porosity Measured in Horizontal Wells
,”
Petrophysics
,
59
(
3
), pp.
288
307
.
32.
Zhu
,
L.
,
Zhang
,
C.
,
Guo
,
C.
,
Jiao
,
Y.
,
Chen
,
L.
,
Zhou
,
X.
,
Zhang
,
C.
, and
Zhang
,
Z.
,
2018
, “
Calculating the Total Porosity of Shale Reservoirs by Combining Conventional Logging and Elemental Logging to Eliminate the Effects of Gas Saturation
,”
Petrophysics
,
59
(
2
), pp.
162
184
.
33.
Galford
,
J.
,
Quirein
,
J.
,
Westacott
,
D.
, and
Witkowsky
,
J.
,
2013
, “
Quantifying Organic Porosity From Logs
,”
Paper SPWLA-2013-RR, Presented at the SPWLA 54th Annual Logging Symposium
,
New Orleans, LA
,
Jun. 22–26
.
34.
Geng
,
Y.
,
Jin
,
Z.
,
Zhao
,
J.
,
Xiang
,
X.
, and
Wang
,
Y.
,
2017
, “
Study on Controlling Factors of Shale Reservoir Pore Type
,”
Pet. Exp. Geol.
,
39
(
1
), pp.
71
78
.
35.
Zhang
,
W.
,
Huang
,
Z.
,
Li
,
X.
,
Chen
,
J.
,
Guo
,
X.
,
Pan
,
Y.
, and
Liu
,
B.
,
2020
, “
Estimation of Organic and Inorganic Porosity in Shale by NMR Method, Insights From Marine Shales With Different Maturities
,”
J. Nat. Gas Sci. Eng.
,
78
, p.
103290
.
36.
Slatt
,
R. M.
, and
O’Brien
,
N. R.
,
2011
, “
Pore Types in the Barnett and Woodford Gas Shales: Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks
,”
AAPG Bull.
,
95
(
12
), pp.
2017
2030
.
37.
Loucks
,
R. G.
,
Reed
,
R. M.
, and
Ruppel
,
S. C.
,
2012
, “
Spectrum of Pore Types and Networks in Mudrocks and a Descriptive Classification for Matrix-Related Mud Rock Pores
,”
AAPG Bull.
,
96
(
6
), pp.
1071
1098
.
38.
Yu
,
B.
,
2013
, “
Pore Classification and Characterization of Shale Gas Reservoir
,”
Geosci. Front.
,
20
(
4
), pp.
211
220
.
39.
Wang
,
X.
,
Liu
,
L.
,
Wang
,
Y.
,
Sheng
,
Y.
,
Zheng
,
S.
,
Wu
,
W.
, and
Luo
,
Z.
,
2020
, “
Comparison of the Pore Structures of Lower Silurian Longmaxi Formation Shales With Different Lithofacies in the Southern Sichuan Basin, China
,”
J. Nat. Gas Sci. Eng.
,
81
, p.
103419
.
40.
Guan
,
Q.
,
,
X.
,
Dong
,
D.
, and
Cai
,
X.
,
2019
, “
Origin and Significance of Organic-Matter Pores in Upper Ordovician Wufeng-Lower Silurian Longmaxi Mudstones, Sichuan Basin
,”
J. Pet. Sci. Eng.
,
176
, pp.
554
561
.
41.
Shi
,
M.
,
Yu
,
B.
,
Zhang
,
J.
,
Huang
,
H.
,
Yuan
,
Y.
, and
Li
,
B.
,
2018
, “
Evolution of Organic Pores in Marine Shales Undergoing Thermocompression: A Simulation Experiment Using Hydrocarbon Generation and Expulsion
,”
J. Nat. Gas Sci. Eng.
,
59
, pp.
406
413
.
42.
Huang
,
C.
,
Ju
,
Y.
,
Zhu
,
H.
,
Lash
,
G. G.
,
Qi
,
Y.
,
Yu
,
K.
,
Feng
,
H.
,
Ju
,
L.
, and
Qiao
,
P.
,
2020
, “
Investigation of Formation and Evolution of Organic Matter Pores in Marine Shale by Helium Ion Microscope: An Example From the Lower Silurian Longmaxi Shale, South China
,”
Mar. Pet. Geol.
,
120
, p.
104550
.
43.
Yang
,
C.
,
Xiong
,
Y.
, and
Zhang
,
J.
,
2019
, “
Differences in the Development of Hydrocarbon Generating Organic Pores in Different Sedimentary Types of Shale in China
,”
Geochemistry
,
48
(
6
), pp.
544
554
.
44.
Guo
,
X.
,
Qin
,
Z.
,
Yang
,
R.
,
Dong
,
T.
,
He
,
S.
,
Hao
,
F.
,
Yi
,
J.
,
Shu
,
Z.
,
Bao
,
H.
, and
Liu
,
K.
,
2019
, “
Comparison of Pore Systems of Clay-Rich and Silica-Rich Gas Shales in the Lower Silurian Longmaxi Formation From the Jiaoshiba Area in the Eastern Sichuan Basin, China
,”
Mar. Pet. Geol.
,
101
, pp.
265
280
.
45.
Xiao
,
D.
,
Zhao
,
R.
,
Yang
,
X.
,
Fang
,
D.
,
Li
,
B.
, and
Sun
,
X.
,
2019
, “
Pore Characterization Classification and Contribution of Marine Shale Gas Reservoir
,”
Pet. Nat. Gas Geol.
,
40
(
6
), pp.
1215
1225
.
46.
Metwally
,
Y. M.
, and
Chesnokov
,
E. M.
,
2012
, “
Clay Mineral Transformation as a Major Source for Authigenic Quartz in Thermo-Mature Gas Shale
,”
Appl. Clay Sci.
,
55
, pp.
138
150
.
47.
Ling
,
S.
,
Wu
,
X.
,
Zhao
,
S.
, and
Liao
,
X.
,
2018
, “
Evolution of Porosity and Clay Mineralogy Associated With Chemical Weathering of Black Shale: A Case Study of Lower Cambrian Black Shale in Chongqing, China
,”
J. Geochem. Explor.
,
188
, pp.
326
339
.
48.
Peltonen
,
C.
,
Marcussen
,
Ø.
,
Bjørlykke
,
K.
, and
Jahren
,
J.
,
2009
, “
Clay Mineral Diagenesis and Quartz Cementation in Mudstones: The Effects of Smectite to Illite Reaction on Rock Properties
,”
Mar. Pet. Geol.
,
26
(
6
), pp.
887
898
.
49.
Pommer
,
M.
, and
Milliken
,
K.
,
2015
, “
Pore Types and Pore-Size Distributions Across Thermal Maturity, Eagle Ford Formation, Southern Texas
,”
AAPG Bull.
,
99
(
9
), pp.
1713
1744
.
50.
Chen
,
F.
,
Zheng
,
Q.
,
Ding
,
X.
,
Lu
,
S.
, and
Zhao
,
H.
,
2020
, “
Pore Size Distributions Contributed by OM, Clay and Other Minerals in Over-Mature Marine Shale: A Case Study of the Longmaxi Shale From Southeast Chongqing, China
,”
Mar. Pet. Geol.
,
122
, p.
104679
.
51.
Chen
,
S.
,
Han
,
Y.
,
Fu
,
C.
,
Zhang
,
H.
,
Zhu
,
Y.
, and
Zuo
,
Z.
,
2016
, “
Micro and Nano-Size Pores of Clay Minerals in Shale Reservoirs: Implication for the Accumulation of Shale Gas
,”
Sediment. Geol.
,
342
, pp.
180
190
.
52.
Zhang
,
T.
,
Ellis
,
G. S.
,
Ruppel
,
S. C.
,
Milliken
,
K.
,
Lewan
,
M.
, and
Sun
,
X.
,
2013
, “
Effect of Organic Matter Properties, Clay Mineral Type and Thermal Maturity on Gas Adsorption in Organic-Rich Shale Systems
,”
Paper URTEC-1583690, Presented at the Unconventional Resources Technology Conference
,
Denver, CO
,
Aug. 12–14
.
53.
Nie
,
H.
,
Sun
,
C.
,
Liu
,
G.
,
Du
,
W.
, and
He
,
Z.
,
2019
, “
Dissolution Pore Types of the Wufeng and Longmaxi Formation in the Sichuan Basin, South China: Implications for Shale Gas Enrichment
,”
Mar. Pet. Geol.
,
101
, pp.
243
251
.
54.
Moore
,
C. H.
,
2004
,
Carbonate Reservoir
,
Elsevier
,
Baton Rouge, LA
, pp.
30
46
.
55.
Ahr-Wayne
,
M.
,
2008
,
Geology of Carbonate Reservoirs
,
John Wiley & Sons
,
Hoboken, NJ
, pp.
156
163
.
56.
Jiang
,
K.
,
Zhou
,
W.
,
Deng
,
N.
,
Zhang
,
H.
,
Xu
,
H.
,
Zhao
,
X.
,
Yi
,
T.
, and
Yang
,
Y.
,
2020
, “
Pyrite Characteristics and Geological Significance in Shale Reservoirs of Wufeng and Longmaxi Formation in Sichuan Basin, China
,”
J. Chengdu Univ. Technol. Sci. Technol. Ed.
,
47
(
1
), pp.
50
64
.
57.
Xu
,
H.
,
Zhou
,
W.
,
Zhang
,
R.
,
Liu
,
S.
, and
Zhou
,
Q.
,
2019
, “
Characterizations of Pore, Mineral and Petrographic Properties of Marine Shale Using Multiple Techniques and Their Implications on Gas Storage Capability for Sichuan Longmaxi Gas Shale Field in China
,”
Fuel
,
241
, pp.
360
371
.
58.
Ellis
,
D. V.
, and
Singer
,
J. M.
,
2008
,
Well Logging for Earth Scientists
,
Springer Science + Business Media, B.V.
,
Dordrecht, The Netherlands
.
59.
Wang
,
H.
,
Shi
,
Z.
,
Zhao
,
Q.
,
Liu
,
D.
,
Sun
,
S.
,
Guo
,
W.
,
Liang
,
F.
,
Lin
,
C.
, and
Wang
,
X.
,
2020
, “
Stratigraphic Framework of the Wufeng-Longmaxi Shale In and Around the Sichuan Basin, China: Implications for Targeting Shale Gas
,”
Energy Geosci.
,
1
(
3
), pp.
124
133
.
60.
Feng
,
Z.
,
Dong
,
D.
,
Tian
,
J.
,
Wu
,
W.
,
Cai
,
Y.
,
Shi
,
Z.
, and
Peng
,
W.
,
2019
, “
Geochemical Characteristics of Lower Silurian Shale Gas in the Changning-Zhaotong Exploration Blocks, Southern Periphery of the Sichuan Basin
,”
J. Pet. Sci. Eng.
,
174
, pp.
281
290
.
61.
Liang
,
F.
,
Zhang
,
Q.
,
Xiong
,
X.
,
Cui
,
H.
,
Liang
,
P.
, and
Ma
,
C.
,
2019
, “
Sedimentary Evolution Model of Organic Rich Shale of Wufeng and Longmaxi Formation in Sichuan Basin, China
,”
J. Sediment.
,
37
(
4
), pp.
847
857
.
62.
Zhang
,
X.
,
Liu
,
C.
,
Zhu
,
Y.
,
Chen
,
S.
,
Wang
,
Y.
, and
Fu
,
C.
,
2015
, “
The Characterization of a Marine Shale Gas Reservoir in the Lower Silurian Longmaxi Formation of the Northeastern Yunnan Province, China
,”
J. Nat. Gas Sci. Eng.
,
27
, pp.
321
335
.
63.
Zhang
,
L.
,
Xiao
,
D.
,
Lu
,
S.
,
Jiang
,
S.
,
Chen
,
L.
,
Guo
,
T.
, and
Wu
,
L.
,
2020
, “
Pore Development of the Lower Longmaxi Shale in the Southeastern Sichuan Basin and Its Adjacent Areas: Insights From Lithofacies Identification and Organic Matter
,”
Mar. Pet. Geol.
,
122
, p.
104662
.
64.
Zhao
,
J.
,
Jin
,
Z.
,
Jin
,
Z.
,
Wen
,
X.
, and
Geng
,
Y.
,
2017
, “
Origin of Authigenic Quartz in Organic-Rich Shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China: Implications for Pore Evolution
,”
J. Nat. Gas Sci. Eng.
,
38
, pp.
21
38
.
65.
Wang
,
P.
,
Li
,
C.
,
Zhang
,
L.
,
Zou
,
C.
,
Li
,
X.
,
Wang
,
G.
,
Jiang
,
L.
,
Zhang
,
Z.
,
Li
,
J.
, and
Mei
,
J.
,
2017
, “
Characteristic of the Shale Gas Reservoirs and Evaluation of Sweet Spotin Wufeng-Longmaxi Formation: A Case From a Well in Zhaotong Shale Gas Demonstration Zone
,”
J. China Coal Soc.
,
42
(
11
), pp.
2925
2935
.
66.
Zhu
,
H.
,
Jia
,
A.
,
Wei
,
Y.
,
Jia
,
C.
,
Jin
,
Y.
, and
Yuan
,
H.
,
2018
, “
Characteristics of Microscopic Pore Structure and Methane Adsorption Capacity of Shale in the Longmaxi Formation in the Zhaotong Area
,”
Pet. Geol. Recov. Effic.
,
25
(
4
), pp.
2
5
.
67.
Wu
,
K.
,
Zhang
,
T.
,
Yang
,
Y.
,
Liang
,
X.
,
Zhou
,
S.
, and
Zhang
,
Z.
,
2016
, “
Geological Characteristics of Wufeng-Longmaxi Shale-Gas Reservoir in the Huangjinba Gas Field, Zhaotong National Shale Gas Demonstration Area
,”
Geol. China
,
43
(
1
), pp.
275
287
.
68.
Hillier
,
S.
,
2003
, “
Quantitative Analysis of Clay and Other Minerals in Sandstones by X-Ray Powder Diffraction (XRPD)
,”
Int. Assoc. Sedimentol. Spec. Publ.
,
34
, pp.
213
251
.
69.
Tissot
,
B. P.
, and
Welte
,
D. H.
,
1984
,
Petroleum Formation and Occurrence
, 2nd ed.,
Springer-Verlag Berlin Heidelberg GmbH
,
Berlin
,
495
.
70.
Wang
,
J.
,
Gu
,
D.
,
Guo
,
W.
,
Zhang
,
H.
, and
Yang
,
D.
,
2019
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012907
.
71.
Adiguna
,
H.
, and
Torres-Verdin
,
C.
,
2013
, “
Comparative Study for the Interpretation of Mineral Concentrations, Total Porosity, and TOC in Hydrocarbon-Bearing Shale From Conventional Well Logs
,”
Paper SPE-166139-MS, Presented at the SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Sept. 30–Oct. 2
.
72.
Cai
,
X.
,
Jin
,
Y.
,
Ye
,
J.
,
Peng
,
L.
,
Sun
,
J.
, and
Zhu
,
Y.
,
2020
, “
A Quantitative Characterization Method of Organic and Inorganic Pores in Shale
,”
Reserv. Eval. Dev.
,
10
(
1
), pp.
30
36
.
73.
Chen
,
Z.
,
Song
,
Y.
,
Jiang
,
Z.
,
Liu
,
S.
,
Li
,
Z.
,
Shi
,
D.
,
Yang
,
W.
,
Yang
,
Y.
,
Song
,
J.
,
Gao
,
F.
,
Zhang
,
K.
, and
Guo
,
X.
,
2019
, “
Identification of Organic Matter Components and Organic Pore Characteristics of Marine Shale: A Case Study of Wufeng-Longmaxi Shale in Southern Sichuan Basin, China
,”
Mar. Pet. Geol.
,
109
, pp.
56
69
.
74.
Mclean
,
R.
,
Miller
,
C.
,
Guzman
,
B.
, and
Walls
,
J.
,
2017
, “
Quantifying Organic Porosity and Predicting Estimated Ultimate Recovery (EUR) in the Eagle Ford Formation
,”
Paper URTEC-2662352, Presented at the Unconventional Resources Technology Conference
,
Austin, TX
,
Jul. 24–26
.
75.
Mathia
,
E. J.
,
Bowen
,
L.
,
Thomas
,
K. M.
, and
Aplin
,
A. C.
,
2016
, “
Evolution of Porosity and Pore Types in Organic-Rich, Calcareous, Lower Toarcian Posidonia Shale
,”
Mar. Pet. Geol.
,
75
, pp.
117
139
.
76.
Hu
,
G.
,
Pang
,
Q.
,
Jiao
,
K.
,
Hu
,
C.
, and
Liao
,
Z.
,
2020
, “
Development of Organic Pores in the Longmaxi Formation Overmature Shales: Combined Effects of Thermal Maturity and Organic Matter Composition
,”
Mar. Pet. Geol.
,
116
, pp.
104
114
.
77.
Chen
,
Q.
,
Kang
,
Y.
,
You
,
L.
,
Yang
,
P.
,
Zhang
,
X.
, and
Cheng
,
Q.
,
2017
, “
Change in Composition and Pore Structure of Longmaxi Black Shale During Oxidative Dissolution
,”
Int. J. Coal Geol.
,
172
, pp.
95
111
.
78.
Singer
,
P. M.
,
Chen
,
Z.
, and
Hirasaki
,
G. J.
,
2016
, “
Fluid Typing and Pore Size in Organic Shale Using 2D NMR in Saturated Kerogen Isolates
,”
Petrophysics
,
57
(
6
), pp.
604
619
.
79.
Anand
,
V.
,
Ali
,
M. R.
,
Abubakar
,
A.
,
Rahul
,
G.
,
Orlando
,
N.
,
Iain
,
P.
, and
Jorge
,
G. I.
,
2017
, “
Unlocking the Potential of Unconventional Reservoirs Through New Generation NMR T1/T2 Logging Measurements Integrated With Advanced Wireline Logs
,”
Petrophysics
,
58
(
2
), pp.
81
96
.
You do not currently have access to this content.