Abstract

The main purpose of this study is to numerically correlate the amount of generated vapor over a hydrofoil to the lift and drag coefficients acting on it. Cavitation characteristics were investigated of a hydrofoil in the cavitating, sub-cavitating, and non-cavitating flows for different angles of attacks (AoA) with the high upstream flow velocity. The hydrofoil was tested in a square water tunnel with water entering the tunnel at various velocities for each AoA ranges from 9.1 m/s to 12.2 m/s. It was found that lift and drag forces acting on the hydrofoil follow the trend of the experimental data quite closely. While the cavitation can be identified by a unique number (averaged vapor volume fraction), the work done created an inverse correlation between this number and the cavitation number at the same angle of attack. The lift force declines with the increase in the vapor content on the hydrofoil surface, meanwhile the drag force peaks at certain vapor volume fraction, and then, a huge reduction occurs with the considerable decrease in the corresponding cavitation number. A fourth-order correlation generated between the lift to drag (L/D) and the cavitation number (σ). It was found the lift-to-drag ratio decreases by the formation of the cavitation over the hydrofoil, thus causing a drop in the efficiency of the turbomachines.

References

References
1.
Brennen
,
C. E.
,
1994
,
Hydrodynamics of Pumps
,
Concepts ETI, Inc., and Oxford University Press
,
Oxford, UK
.
2.
Knapp
,
R.
,
Daily
,
J.
, and
Hammitt
,
F.
,
1979
,
Cavitation
,
McGraw-Hill
,
New York
.
3.
Liu
,
Y. L.
,
Zhang
,
A. M.
, and
Tian
,
Z. L.
,
2014
, “
Approximation of Underwater Explosion Bubble by Singularities Based on BEM
,”
Ocean Eng.
,
75
, pp.
46
52
. 10.1016/j.oceaneng.2013.11.008
4.
De Lange
,
D. F.
, and
De Bruin
,
G. J.
,
1997
, “
Sheet Cavitation and Cloud Cavitation, Re-entrant Jet and Three-Dimensionality
,”
Appl. Sci. Res.
,
58
(
1/4
), pp.
91
114
. 10.1023/A:1000763130780
5.
Kjeldsen
,
M.
,
Arndt
,
R. E. A.
, and
Effertz
,
M.
,
2000
, “
Spectral Characteristics of Sheet/Cloud Cavitation
,”
ASME J. Fluids Eng.
,
122
(
3
), pp.
481
487
. 10.1115/1.1287854
6.
Kravtsova
,
A. Y.
,
Markovich
,
D. M.
,
Pervunin
,
K. S.
,
Timoshevskiy
,
M. V.
, and
Hanjalić
,
K.
,
2014
, “
High-Speed Visualization and PIV Measurements of Cavitating Flows Around a Semi-Circular Leading-Edge Flat Plate and NACA0015 Hydrofoil
,”
Int. J. Multiphase Flow
,
60
, pp.
119
134
. 10.1016/j.ijmultiphaseflow.2013.12.004
7.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M. R.
, and
Amano
,
R. S.
,
2019
, “
Performance Investigation of Very-Low-Head Kaplan Hydro-Turbines
,”
AIAA SciTech Forum 2019
, AIAA-2019-0241. 10.2514/6.2019-0241.
8.
Leroux
,
J. B.
,
Astolfi
,
J. A.
, and
Billard
,
J. Y.
,
2004
, “
An Experimental Study of Unsteady Partial Cavitation
,”
ASME J. Fluids Eng.
,
126
(
1
), pp.
94
101
. 10.1115/1.1627835
9.
Wu
,
Q.
,
Huang
,
B.
,
Wang
,
G. Y.
, and
Gao
,
Y.
,
2015
, “
Experimental and Numerical Investigation of Hydroelastic Response of a Flexible Hydrofoil in Cavitating Flow
,”
Int. J. Multiphase Flow
,
74
, pp.
19
33
. 10.1016/j.ijmultiphaseflow.2015.03.023
10.
Zhang
,
L. X.
, and
Khoo
,
B. C.
,
2014
, “
Dynamics of Unsteady Cavitating Flow Incompressible Two-Phase Fluid
,”
Ocean Eng.
,
87
, pp.
174
184
. 10.1016/j.oceaneng.2014.06.005
11.
Foeth
,
E. J.
,
van Terwisga
,
T.
, and
van Doorne
,
C.
,
2008
, “
On the Collapse Structure of an Attached Cavity on a Three-Dimensional Hydrofoil
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
071303
. 10.1115/1.2928345
12.
Foeth
,
E. J.
,
van Doorne
,
C. W. H.
,
van Terwisga
,
T.
, and
Wieneke
,
B.
,
2006
, “
Time-Resolved PIV and Flow Visualization of 3D Sheet Cavitation
,”
Exp. Fluids
,
40
(
4
), pp.
503
513
. 10.1007/s00348-005-0082-9
13.
Laberteaux
,
K. R.
, and
Ceccio
,
S. L.
,
2001
, “
Partial Cavity Flows. Part 2. Cavities Forming on Test Objects With Spanwise Variation
,”
J. Fluid Mech.
,
431
, pp.
43
46
. 10.1017/S0022112000002937
14.
Yang
,
Y.
,
Jenet
,
F.
,
Xu
,
B.
,
Garza
,
J. C.
,
Tamayo
,
B.
,
Chaves
,
Y.
,
Reyes
,
O.
, and
Fuentes
,
S.
,
2020
, “
Experimental Study of a Lift-Type Wave Energy Converter Rotor in a Freewheeling Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
031201
. 10.1115/1.4044550
15.
Kermeen
,
R. W.
, “
Water Tunnel Tests of the NACA 66-012 Hydrofoil in Non-Cavitating and Cavitating Flows
,”
Hydrodynamics Laboratory, California Institute of Technology, Department of Navy, Bureau of Ships
, 1956, Report No. 47-5.
16.
Kawanami
,
Y.
,
Kato
,
H.
,
Yamaguchi
,
H.
,
Tanimura
,
M.
, and
Tagaya
,
Y.
,
1997
, “
Mechanism and Control of Cloud Cavitation
,”
ASME J. Fluids Eng.
,
119
(
4
), pp.
788
794
. 10.1115/1.2819499
17.
Arndt
,
R. E. A.
,
Song
,
C. C. S.
,
Kjeldsen
,
M.
, and
Keller
,
A.
,
2000
, “
Instability of Partial Cavitation: A Numerical/Experimental Approach
,”
Proceedings of the 23rd Symposium on Naval Hydrodynamics
,
Val de Reuil, France
,
Sept. 17–22
, National Academies Press.
18.
Kim
,
S. E.
,
2009
, “
A Numerical Study of Unsteady Cavitation on a Hydrofoil
,”
CAV2009, Paper No. 56, Proceedings of the 7th International Symposium on Cavitation
,
Ann Arbor, MI
,
Aug. 16–20
.
19.
Li
,
Z.
, and
Van Terwisga
,
T.
,
2011
, “
On the Capability of Multiphase RANS Codes to Predict Cavitation Erosion,” Institute for Fluid Dynamics and Ship Theory (FDS)
,”
Proceedings of the 2nd International Symposium on Marine Propulsors
,
Hamburg, Germany
,
June 15–17
.
20.
Decaix
,
J.
, and
Goncalvès
,
E.
,
2013
, “
Investigation of Three-Dimensional Effects on a Cavitating Venturi Flow
,”
Int. J. Heat Fluid Flow
,
44
, pp.
576
595
. 10.1016/j.ijheatfluidflow.2013.08.013
21.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M.
, and
Amano
,
R. S.
,
2020
, “
Investigation of Horizontal Micro Kaplan Hydro Turbine Performance Using Multi-Disciplinary Design Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
052101
. 10.1115/1.4045821
22.
Wu
,
X. C.
,
Wang
,
Y. W.
, and
Huang
,
C. G.
,
2016
, “
Effect of Mesh Resolution on Large Eddy Simulation of Cloud Cavitating Flow Around a Three-Dimensional Twisted Hydrofoil
,”
Eur. J. Mech. B Fluids
,
55
(
Part 1
), pp.
229
240
. 10.1016/j.euromechflu.2015.09.011
23.
Hartman
,
P. J.
,
Luetjen
,
D.
, and
Mandel
,
D.
,
1983
, “
Reliability Analysis of Total Systems Using Component Failure Data
,”
ASME J. Energy Resour. Technol.
,
105
(
2
), pp.
217
221
. 10.1115/1.3230906
24.
Tabatabaei
,
N.
,
Gantasala
,
S.
, and
Cervantes
,
M. J.
,
2019
, “
Wind Turbine Aerodynamic Modeling in Icing Condition: Three-Dimensional RANS-CFD Versus Blade Element Momentum Method
,”
ASME J. Energy Resources Technol.
,
141
(
7
), p.
071201
. 10.1115/1.4042713
25.
Huang
,
S.
,
He
,
M.
,
Wang
,
C.
, and
Chang
,
X.
,
2010
, “
Simulation of Cavitation Flow Around a 2-D Hydrofoil
,”
J. Mar. Sci. Appl.
,
9
(
1
), pp.
63
68
. 10.1007/s11804-010-8090-4
26.
Schroeder
,
S.
,
Kim
,
S. E.
, and
Jasak
,
H.
,
2009
, “
Toward Predicting Performance of an Axial Flow Waterjet Including the Effects of Cavitation and Thrust Breakdown
,”
Norwegian Marine Technology Research Institute, Proceedings of First International Symposium on Marine Propulsors
,
Trondheim, Norway
,
June 22–24
.
27.
Gosset
,
A.
,
Diaz Casas
,
V.
, and
Lopez Pena
,
F.
,
2010
, “
Evaluation of the Cavitating Foam Solver for Low Mach Number Flow Around a 2-D Hydrofoil
,”
Proceedings of Fifth OpenFOAM Workshop
,
Gothenburg, Sweden
.
28.
Nedyalkov
,
I.
, and
Wosnik
,
M.
,
2013
, “
Cavitation Investigation of Hydrofoils for Marine Hydrokinetic Turbines
,”
Proceeding of ASME 2013 Fluids Engineering Division Summer Meeting
,
Incline Village, NV
,
July 7–11
, p.
V002T06A010
.
29.
Tabatabaei
,
N.
,
Raisee
,
M.
, and
Cervantes
,
M. J.
,
2019
, “
Uncertainty Quantification of Aerodynamic Icing Losses in Wind Turbine With Polynomial Chaos Expansion
,”
ASME J. Energy Resources Technol.
,
141
(
5
), p.
051210
. 10.1115/1.4042732
30.
Bensow
,
R. E.
, and
Bark
,
G.
,
2010
, “
Implicit LES Prediction of the Cavitating Flow on a Propeller
,”
ASME J. Fluids Eng.
,
132
(
4
), p.
041302
. 10.1115/1.4001342
31.
Wang
,
Y. W.
,
Liao
,
L. J.
,
Du
,
T. Z.
,
Huang
,
C. G.
,
Liu
,
Y. B.
,
Fang
,
X.
, and
Liang
,
N. G.
,
2014
, “
A Study on the Collapse of Cavitation Bubbles Surrounding the Underwater-Launched Projectile and Its Fluid-Structure Coupling Effects
,”
Ocean Eng.
,
84
, pp.
228
236
. 10.1016/j.oceaneng.2014.04.014
32.
Abbas
,
A. I.
,
Amano
,
R. S.
,
Saravani
,
M. S.
,
Qandil
,
M. D.
, and
Sakamoto
,
T.
,
2019
, “
Optimization of Kaplan Hydro-Turbine at Very Low Head With Rim-Driven Generator
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
111204
. 10.1115/1.4043710
33.
Abbas
,
A. I.
,
Qandil
,
M. D.
,
Al-Haddad
,
M.
,
Saravani
,
M. S.
, and
Amano
,
R. S.
,
2019
, “
Utilization of Hydroturbines in Wastewater Treatment Plants
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062011
. 10.1115/1.4042969
34.
Qandil
,
M. D.
,
ElGammal
,
T.
,
Abbas
,
A. I.
, and
Amano
,
R. S.
,
2019
, “
Predicting the Cavitation Phenomena Over the Hydrofoil: CFD Validation
,”
AIAA SciTech 2019 Forum
,
San Diego, CA
,
Jan. 7–11
, p.
0783
.
35.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
36.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2017
, “
Improvement of Aerodynamic Performance of Cambered Airfoils Using Leading-Edge Slots
,”
ASME J. Energy Resour. Technol.
,
139
(
5
), p.
051204
. 10.1115/1.4036047
37.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
Oxford, UK
.
38.
Landahl
,
M. T.
, and
Mollo-Christensen
,
E.
,
1986
,
Turbulence and Random Processes in Fluid Mechanics
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
39.
Boersma
,
B. J.
, and
Lele
,
S. K.
,
1999
, “
Large Eddy Simulation of Compressible Turbulent Jets
,”
Center for Turbulence Research, Annual Research Briefs
, pp.
365
377
.
40.
Leonard
,
A.
,
1975
, “
Energy Cascade in Large-Eddy Simulations of Turbulent Fluid Flows
,”
Adv. Geophys.
,
18
(
Part A
), pp.
237
248
. 10.1016/S0065-2687(08)60464-1
41.
Knight
,
D.
,
Zhou
,
G.
,
Okong'o
,
N.
, and
Shukla
,
V.
,
1998
, “
Large Eddy Simulation of Compressible Flows Using Unstructured Grids
,”
Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 12–15
.
42.
Schmitt
,
F. G.
,
2007
, “
About Boussinesq's Turbulent Viscosity Hypothesis: Historical Remarks and a Direct Evaluation of Its Validity
,”
C. R. Mec.
,
335
(
9–10
), pp.
617
627
. 10.1016/j.crme.2007.08.004
43.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
. 10.1023/A:1009995426001
44.
Ducros
,
F.
,
Nicoud
,
F.
, and
Poinsot
,
T.
,
1998
, “
Wall-Adapting Local Eddy-Viscosity Models for Simulations in Complex Geometries
,”
Proceedings of the 6th Numerical Methods for Fluid Dynamics
,
Oxford
,
1998
.
45.
Dixon
,
S. L.
, and
Hall
,
C. A.
,
2014
,
Fluid Mechanics, and Thermodynamics of Turbomachinery
, 7th ed.,
Elsevier
,
New York
.
46.
Noh
,
W. F.
, and
Woodward
,
P.
,
1976
, “
SLIC (Simple Line Interface Calculation)
,”
Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics, Twente University
,
Enschede, The Netherlands
,
June 28–July 2
,
Springer
,
Berlin/Heidelberg
, pp.
330
340
.
You do not currently have access to this content.