Abstract

Dual-fuel diesel–methane low-temperature combustion (LTC) has been investigated by various research groups, showing high potential for emissions reduction (especially oxides of nitrogen oxide (NOx) and particulate matter (PM)) without adversely affecting fuel conversion efficiency in comparison with conventional diesel combustion. However, when operated at low load conditions, dual-fuel LTC typically exhibits poor combustion efficiencies. This behavior is mainly due to low bulk gas temperatures under lean conditions, resulting in unacceptably high carbon monoxide (CO) and unburned hydrocarbon (UHC) emissions. A feasible and rather innovative solution may be to split the pilot injection of liquid fuel into two injection pulses, with the second pilot injection supporting CO and UHC oxidation once combustion is initiated by the first one. In this study, diesel–methane dual-fuel LTC is investigated numerically in a single-cylinder heavy-duty engine operating at 5 bar brake mean effective pressure (BMEP) at 85% and 75% percentage of energy substitution (PES) by methane (taken as a natural gas (NG) surrogate). A multidimensional model is first validated in comparison with the experimental data obtained on the same single-cylinder engine for early single pilot diesel injection at 310 crank angle degrees (CAD) and 500 bar rail pressure. With the single pilot injection case as baseline, the effects of multiple pilot injections and different rail pressures on combustion and emissions are investigated, again showing good agreement with the experimental data. Apparent heat release rate and cylinder pressure histories as well as combustion efficiency trends are correctly captured by the numerical model. Results prove that higher rail pressures yield reductions of HC and CO by 90% and 75%, respectively, at the expense of NOx emissions, which increase by ∼30% from baseline still remaining at very low level (under 1 g/kWh). Furthermore, it is shown that postinjection during the expansion stroke does not support the stable development of the combustion front as the combustion process is confined close to the diesel spray core.

References

References
1.
U.S. Department of Energy
,
2009
, “
Basic Research Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels—Report of the Basic Energy Sciences Workshop
,” https://science.osti.gov/
2.
EIA
,
2018
, “
Annual Energy Outlook
,” https://www.eia.gov/outlooks/aeo/av.php, Accessed March 16, 2019.
3.
U.S. EPA 40 CFR Parts 9, 22, 85 et al.; NHTSA 49 CFR Parts 523, 534 et al
., “
Greenhouse Gas Emissions and Fuel Efficiency Standards for Medium and Heavy-Duty Engines and Vehicles -Phase 2; Final Rule
,”
Federal Register, 2016
.
4.
State of California Air Resources Board
, 2013, “
Evaluating Technologies and Methods to Lower Nitrogen Oxide Emissions From Heavy-Duty Vehicles, Resolution 13-27
,” http://www.arb.ca.gov/board/books/2013/062713/prores1327.pdf
5.
US Department of Energy
,
2016
, “
Energy Department Announces $137 Million Investment in Commercial and Passenger Vehicle Efficiency
,” https://www.energy.gov/articles/energy-department-announces-137-million-investment-commercial-and-passenger-vehicle
6.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
. 10.1016/j.pecs.2014.05.003
7.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2018
, “
Mattia Pinotti Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
. 10.1115/1.4038464
8.
Nithyanandan
,
K.
,
Zhang
,
J.
,
Li
,
Y.
,
Meng
,
X.
,
Donahue
,
R.
,
Lee
,
C.-F.
, and
Dou
,
H.
,
2016
, “
Huili Dou Diesel-Like Efficiency Using Compressed Natural Gas/Diesel Dual-Fuel Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052201
. 10.1115/1.4032621
9.
Mitchell
,
R. H.
, and
Olsen
,
D. B.
,
2018
, “
Extending Substitution Limits of a Diesel–Natural Gas Dual Fuel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
052202
. 10.1115/1.4038625
10.
Polk
,
A. C.
,
Gibson
,
C. M.
,
Shoemaker
,
N. T.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2013
, “
Analysis of Ignition Behavior in a Turbocharged Direct Injection Dual Fuel Engine Using Propane and Methane as Primary Fuels
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032202
. 10.1115/1.4023482
11.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Jha
,
P. R.
and
Mahabadipour
,
H.
,
2019
, “Cyclic Variations in Diesel-NG Dual Fuel Engines,”
Natural Gas Engines for Transportation and Power Generation
,
K. K.
Srinivasan
,
A. K.
Agarwal
,
S. R.
Krishnan
, and
V.
Mulone
, eds.,
Springer Verlag
,
Berlin, Germany
.
12.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Qi
,
Y.
,
2013
, “
Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012003
. 10.1115/1.4024855
13.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2004
, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
665
671
. 10.1115/1.1760530
14.
Singh
,
S.
,
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Midkiff
,
K. C.
, and
Bell
,
S. R.
,
2004
, “
Effect of Pilot Injection Timing, Pilot Quantity, and Intake Charge Conditions on Performance and NOx Emissions for an Advanced Low-Pilot-Ignited Natural Gas Engine
,”
Int. J. Engine Res.
,
5
(
4
), pp.
329
348
. 10.1243/146808704323224231
15.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
,
Midkiff
,
K. C.
,
Bell
,
S. R.
,
Gong
,
W.
,
Fiveland
,
S. B.
, and
Willi
,
M.
,
2006
, “
The Advanced Low Pilot-Ignited Natural Gas Engine—A Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
213
218
. 10.1115/1.1915428
16.
Raihan
,
M. S.
,
Guerry
,
E. S.
,
Dwivedi
,
U.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2014
, “
Experimental Analysis of Diesel-Ignited Methane Dual Fuel Low Temperature Combustion in a Single Cylinder Diesel Engine
,”
J. Energy Eng
,
141
(
2
). 10.1061/(ASCE)EY.1943-7897.0000235, C4014007
17.
Guerry
,
E. S.
,
Raihan
,
M. S.
,
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Sohail
,
A.
,
2016
, “
Injection Timing Effects on Partially Premixed Diesel–Methane Dual Fuel Low Temperature Combustion
,”
Appl. Energy
,
162
, pp.
99
113
. 10.1016/j.apenergy.2015.10.085
18.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
, and
Yamaguchi
,
R.
,
2002
, “
Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine
,”
SAE Technical Paper 2002-01-2723
.
19.
Azimov
,
U.
,
Tomita
,
E.
,
Kawahara
,
N.
, and
Harada
,
Y.
,
2011
, “
Premixed Mixture Ignition in the End-Gas Region (PREMIER) Combustion in a Natural Gas Dual-Fuel Engine: Operating Range and Exhaust Emissions
,”
Int. J. Engine Res.
,
12
(
5
), pp.
484
497
. 10.1177/1468087411409664
20.
Königsson
,
F.
,
Kuyper
,
J.
,
Stalhammar
,
P.
, and
Angstrom
,
H.
,
2013
, “
The Influence of Crevices on Hydrocarbon Emissions From a Diesel-Methane Dual Fuel Engine
,”
SAE Int. J. Engines
,
6
(
2
), pp.
751
765
. 10.4271/2013-01-0848
21.
Sohail
,
A.
,
2015
, “
An Experimental Investigation of Dual-Injection Strategies on Diesel-Methane Dual-Fuel Low Temperature Combustion in a Single Cylinder Research Engine
,” M.S. thesis,
Department of Mechanical Engineering, Mississippi State University
,
Starkville, MS
.
22.
Raihan
,
M. S.
,
2014
, “
A Comparative Study of Diesel-Ignited Methane and Propane Dual Fuel Low Temperature Combustion in a Single Cylinder Research Engine
,” M.S. thesis,
Department of Mechanical Engineering, Mississippi State University
,
Starkville, MS
.
23.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2015
,
CONVERGE CFD Manual
,
Convergent Science
,
Madison, WI
.
24.
Aniello
,
A.
,
Bartolucci
,
L.
,
Cordiner
,
S.
,
Mulone
,
V.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2018
, “
CFD Analysis of Diesel-Methane Dual Fuel Low Temperature Combustion at Low Load and High Methane Substitution
,”
ASME 2018 Internal Combustion Engine Division Fall Technical Conference
,
San Diego, CA
,
November
.
25.
Jha
,
P. R.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2017
, “
Influence of Swirl Ratio on Diesel-Methane Dual Fuel Combustion: A CFD Investigation
,”
Proceedings of the ASME 2017 Internal Combustion Engine Fall Technical Conference (ICEF2017)
,
Seattle, WA
,
Oct. 15–18
,
Paper No. ICEF2017-3683
.
26.
Königsson
,
F.
, and
Stalhammar
,
P.
,
2012
, “
Controlling the Injector Tip Temperature in a Diesel Dual Fuel Engine
,”
SAE Technical Paper
, Paper No. 2012-01-0826.
27.
Leuthel
,
R.
,
Pfitzner
,
M.
, and
Frobenius
,
M.
,
2008
, “
Numerical Study of Thermal-Fluid-Interaction in a Diesel Fuel Injector
,”
SAE Technical Paper
, Paper No. 2008-04-2760.
28.
Bartolucci
,
L.
,
Carlucci
,
A. P.
,
Cordiner
,
S.
,
Ficarella
,
A.
,
Laforgia
,
D.
,
Mulone
,
V.
,
Rocco
,
V.
,
Strafella
,
L.
, and
Strafella
,
L.
,
2018
, “
Dual-Fuel Injection Fundamentals: Experimental—Numerical Analysis Into a Constant-Volume Vessel
,”
Energy Procedia
,
148
, pp.
18
25
. 10.1016/j.egypro.2018.08.014
29.
Som
,
S.
,
Rodriguez
,
A. I.
,
Longman
,
D. E.
, and
Aggarwal
,
S. K.
,
2011
, “
Effect of Nozzle Orifice Geometry on Spray, Combustion and Emission Characteristics Under Diesel Engine Conditions
,”
Fuel
,
90
(
3
), pp.
1267
1276
.
30.
Versteeg
,
H.
, and
Malalasekra
,
W.
,
2009
,
An Introduction to Computational Fluid Dynamics
,
Pearson
,
London, UK
.
31.
Hockett
,
A. J.
,
Hampson
,
J.
, and
Marchese
,
A. J.
,
2017
, “
Natural Gas/Diesel RCCI CFD Simulations Using Multi-Component Fuel Surrogates
,”
Int. J. Powertrains
,
6
(
1
), p.
76
. 10.1504/IJPT.2017.082915
32.
Stagni
,
A.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2016
, “
Skeletal Mechanism Reduction Through Species-Targeted Sensitivity Analysis
,”
Combust. Flame
,
163
, pp.
382
393
. 10.1016/j.combustflame.2015.10.013
33.
Yao
,
T.
,
Pei
,
Y.
,
Zhong
,
B. J.
,
Som
,
S.
,
Lu
,
T.
, and
Luo
,
K. H.
,
2017
, “
A Compact Skeletal Mechanism for n-Dodecane With Optimized Semi-Global Low-Temperature Chemistry for Diesel Engine Simulations
,”
Fuel
,
191
, pp.
339
349
. 10.1016/j.fuel.2016.11.083
34.
Petersen
,
E.
,
Davidson
,
D.
, and
Hanson
,
R.
,
1999
, “
Kinetics Modeling of Shock-Induced Ignition in Low-Dilution CH4/O2 Mixtures at High Pressures and Intermediate Temperatures
,”
Combust. Flame
,
117
(
1–2
), pp.
272
290
. 10.1016/S0010-2180(98)00111-4
35.
Partridge
,
K. R.
,
Jha
,
P. R.
,
Mahabadipour
,
H.
,
Krishnan
,
S. R.
, and
Srinivasan
,
K. K.
,
2018
, “
Systematic Uncertainty Considerations in the Comparison of Experimental and Computed Cylinder Pressure and Heat Release Histories
,”
Proceedings of the ASME 2018 Internal Combustion Engine Fall Technical Conference (ICEF2018)
,
San Diego, CA
,
Nov. 4–7
,
Paper No. ICEF2018-9707
.
36.
Li
,
Z. S.
,
Li
,
B.
,
Sun
,
Z. W.
,
Bai
,
X. S.
, and
Aldén
,
M.
,
2010
, “
Turbulence and Combustion Interaction: High Resolution Local Flame Front Structure Visualization Using Simultaneous Single-Shot PLIF Imaging of CH, OH, and CH2O in a Piloted Premixed Jet Flame
,”
Combust. Flame
,
157
(
6
).
You do not currently have access to this content.