Abstract

The acid-fracturing is applied wildly to simulate the formation in vuggy carbonate reservoirs. But it does not figure out clearly the mechanism of fracture propagation while fracture encountering dissolved cavern, and there are few researches considering the influence of dissolved cavern on fracture propagation. In order to study fracture propagation regularity in vuggy carbonate reservoirs, numerical simulations are carried out by the seepage–stress–damage coupling equation based on the damage mechanics theory and the accuracy of the model is validated by comparison with experimental results. Some factors influencing the fracture propagation such as dissolved cavern, formation parameters, and construction parameters are considered. The simulation results show that there are four fracture propagation forms after the fracture encountering dissolved cavern, namely, block, crossing over directly, crossing over after deflection, and deflection. The entire process of injecting the pressure curve can be divided into five stages: initial initiation zone, encountering dissolved cavern pressure released zone, the dissolved cavern inside builds the pressure zone, re-ruptured zone, and fracture propagation zone. The horizontal principal stress difference of the formation controls the tendency of fracture propagation and the generation of branch fractures. It is easy to generate branch fractures under the condition of low horizontal principal stress. The increase in horizontal principal stress limits the deformation of fracture, making it more convenient for fracture to extend toward the maximum horizontal principal stress. The study results are significant for optimizing fracturing construction plans and improving the probability of connection between fracture and dissolved cavern.

References

1.
Iwere
,
F. O.
,
Moreno
,
J. E.
,
Apaydin
,
O. G.
,
Leon Ventura
,
R.
, and
Garcia
,
J. L.
,
2002
, “
Vug Characterization and Pore Volume Compressibility for Numerical Simulation of Vuggy and Fractured Carbonate Reservoirs
,”
SPE International Petroleum Conference and Exhibition in Mexico
,
SPE-74341-MS
.
2.
Shedid
,
S. A.
, and
Almehaideb
,
R. A.
,
2001
, “
Enhanced Reservoir Description of Heterogeneous Carbonate Reservoirs
,”
J. Can. Pet. Technol.
,
42
(
7
), pp.
23
28
. 10.2118/2001-009
3.
Li
,
S.
,
Kang
,
Y. L.
,
You
,
L. J.
,
Li
,
D. Q.
, and
Lian
,
Z. H.
,
2014
, “
Experimental and Numerical Investigation of Multiscale Fracture Deformation in Fractured–Vuggy Carbonate Reservoirs
,”
Arabian J. Sci. Eng.
,
39
(
5
), pp.
4241
4249
. 10.1007/s13369-014-1018-6
4.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Qu
,
Z. Q.
,
Zhou
,
T.
,
Xiao
,
Y. S.
, and
Gao
,
J.
,
2014
, “
Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume
,”
Fuel
,
128
, pp.
373
380
. 10.1016/j.fuel.2014.03.029
5.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Ge
,
H. K.
,
Wang
,
X. Q.
,
Lei
,
X.
, and
Xiao
,
B.
,
2015
, “
A New Method for Evaluation of Fracture Network Formation Capacity of Rock
,”
Fuel
,
140
, pp.
778
787
. 10.1016/j.fuel.2014.10.017
6.
Soleimani
,
M.
,
2017
, “
Naturally Fractured Hydrocarbon Reservoir Simulation by Elastic Fracture Modeling
,”
Pet. Sci.
,
14
(
2
), pp.
286
301
. 10.1007/s12182-017-0162-5
7.
Guo
,
T. K.
,
Zhang
,
S. C.
,
Zou
,
Y. S.
, and
Xiao
,
B.
,
2015
, “
Numerical Simulation of Hydraulic Fracture Propagation in Shale Gas Reservoir
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
847
856
. 10.1016/j.jngse.2015.07.024
8.
Rui
,
Z. H.
,
Guo
,
T. K.
,
Feng
,
Q.
,
Qu
,
Z. Q.
,
Qi
,
N.
, and
Gong
,
F. C.
,
2018
, “
Influence of Gravel on the Propagation Pattern of Hydraulic Fracture in the Glutenite Reservoir
,”
J. Pet. Sci. Eng.
,
165
, pp.
627
639
. 10.1016/j.petrol.2018.02.067
9.
Kobayashi
,
A. S.
,
Johnson
,
B. N.
, and
Wade
,
B. G.
,
1974
, “
Crack Approaching a Hole
,”
Fracture Analysis: Proceedings of the 1973 National Symposium on Fracture Mechanics
,
ASTM International, West Conshohocken, PA
.
10.
Kranz
,
R. L.
,
1979
, “
Crack-Crack and Crack-Pore Interactions in Stressed Granite
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
16
(
1
), pp.
37
47
. 10.1016/0148-9062(79)90773-3
11.
Chen
,
Y. Z.
,
1984
, “
Solutions of Multiple Crack Problems of a Circular Plate or an Infinite Plate Containing a Circular Hole by Using Fredholm Integral Equation Approach
,”
Int. J. Fract.
,
25
(
3
), pp.
155
168
. 10.1007/BF01140834
12.
Theocaris
,
P. S.
, and
Milios
,
J.
,
1981
, “
The Process of the Momentary Arrest of a Moving Crack Approaching a Material Discontinuity
,”
Int. J. Mech. Sci.
,
23
(
7
), pp.
423
436
. 10.1016/0020-7403(81)90080-1
13.
Hu
,
K. X.
,
Chandra
,
A.
, and
Huang
,
Y.
,
1993
, “
Multiple Void-Crack Interaction
,”
Int. J. Solids Struct.
,
30
(
11
), pp.
1473
1489
. 10.1016/0020-7683(93)90072-F
14.
Xie
,
H. F.
,
Rao
,
Q. H.
,
Xie
,
Q.
,
Li
,
Z. Y.
, and
Wang
,
Z.
,
2008
, “
Effect of Holes on In-plane Shear (Mode II) Crack Sub-critical Propagation of Rock
,”
J. Cent. South Univ. Technol.
,
15
(
S1
), pp.
453
456
. 10.1007/s11771-008-0398-8
15.
Zangeneh
,
N.
,
Eberhardt
,
E.
, and
Bustin
,
R. M.
,
2015
, “
Investigation of the Influence of Natural Fractures and In-situ Stress on Hydraulic Fracture Propagation Using a Distinct-Element Approach
,”
Revue Canadienne De Géotechnique
,
52
(
7
), pp.
926
945
. 10.1139/cgj-2013-0366
16.
Zhang
,
X.
, and
Jeffrey
,
R. G.
,
2006
, “
The Role of Friction and Secondary Flaws on Deflection and Re-initiation of Hydraulic Fractures at Orthogonal Pre-existing Fractures
,”
Geophys. J. R. Astron. Soc.
,
167
, pp.
1454
1465
. 10.1111/j.1365-246X.2006.03062.x
17.
Rui
,
Z. H.
,
Wang
,
X. Q.
,
Zhang
,
Z. E.
,
Lu
,
J.
,
Chen
,
G.
,
Zhou
,
X. Y.
, and
Patil
,
S.
,
2018
, “
A Realistic and Integrated Model for Evaluating Oil Sands Development With Steam Assisted Gravity Drainage Technology in Canada
,”
Appl. Energy
,
213
, pp.
76
91
. 10.1016/j.apenergy.2018.01.015
18.
Taleghani
,
A. D.
, and
Olson
,
J. E.
,
2009
, “
Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs: An Improved Model for the Interaction Between Induced and Natural Fractures
,”
SPE Annual Technical Conference and Exhibition
,
New Orleans, LA
,
Oct. 4–7
.
19.
Rui
,
Z. H.
,
Lu
,
J.
,
Zhang
,
Z. E.
, and
Guo
,
R.
,
2017
, “
A Quantitative Oil and Gas Reservoir Evaluation System for Development
,”
J. Nat. Gas Sci. Eng.
,
42
, pp.
31
39
. 10.1016/j.jngse.2017.02.026
20.
Biot
,
M. A.
,
1955
, “
Theory of Elasticity and Consolidation for a Porous Anisotropic Solid
,”
ASME J. Appl. Mech.
,
26
(
2
), pp.
182
185
. 10.1063/1.1721956
21.
Yang
,
T. H.
,
Tang
,
C. A.
,
Zhu
,
W. C.
, and
Feng
,
Q. Y.
,
2001
, “
Coupling Analysis of Seepage and Stresses in Rock Failure Process
,”
Chin. J. Geotech. Eng.
,
23
, pp.
489
493
.
22.
Chen
,
H. Y.
,
Teufel
,
L. W.
, and
Lee
,
R. L.
,
1995
, “
Coupled Fluid Flow and Geomechanics in Reservoir Study—I. Theory and Governing Equationsm
,”
SPE Annual Technical Conference and Exhibition, SPE-30752-MS
.
23.
Rahman
,
M.
,
Aghighi
,
M. A.
,
Rahman
,
S. S.
, and
Ravoof
,
S. A.
,
2009
, “
Interaction Between Induced Hydraulic Fracture and Pre-existing Natural Fracture in a Poro-Elastic Environment: Effect of Pore Pressure Change and the Orientation of Natural Fractures
,”
Asia Pacific Oil and Gas Conference & Exhibition, SPE-122574-MS
.
24.
Wang
,
Y. T.
, and
Miskimins
,
J. L.
,
2010
, “
Experimental Investigations of Hydraulic Fracture Growth Complexity in Slickwater Fracturing Treatments
,”
Proceeding of Tight Gas Completions Conference, SPE-137515-MS
.
25.
Liu
,
H. Y.
,
Kou
,
S. Q.
, and
Lindquist
,
P. A.
,
2002
, “
Numerical Simulation of the Fracture Process in Cutting Heterogeneous Brittle Material
,”
Int. J. Numer. Anal. Methods Geomech.
,
26
(
13
), pp.
1253
1278
. 10.1002/nag.243
26.
Liu
,
H. Y.
,
Requite
,
M.
, and
Kou
,
S. Q.
,
2004
, “
Characterization of Rock Heterogeneity and Numerical Verification
,”
Eng. Geol.
,
72
(
1–2
), pp.
89
119
. 10.1016/j.enggeo.2003.06.004
27.
Zhou
,
D. W.
,
Zhang
,
G. Q.
,
Liu
,
Z. B.
, and
Zhou
,
Z. L.
,
2016
, “
Experimental Investigation on Propagation Interferences of Staged Muti-Cluster Perforation Fractures in Tight Sandstone
,”
SPE Asia Pacific Hydraulic Fracturing Conference, SPE-181831-MS
.
28.
Zhou
,
D. W.
,
2016
,
Experimental Investigation on Fracture-Vug Rock of SRV Fracturing [D]
,
China University of Petroleum
,
Beijing
.
You do not currently have access to this content.