Abstract

The application of turbocharged intercooler direct injection (DI) diesel engine in large diesel vehicle transportation and construction machinery will be indispensable for a long time in the future. The extreme condition of the plateau has become a hotspot in the research of diesel combustion. When the diesel engine works on the cold-start or low-load/low-speed condition, the problems of combustion and emission caused by abnormal supercharging of a turbocharger are apparent. The development of the miniaturization of diesel engines can effectively avoid liquid-wall impingement. However, the low density of the plateau will bring inevitable combustion modes, such as impinging ignition and combustion. This study summarized the relationship among spray, fuel–air mixing, ignition, soot formation, and ambient density under the condition of impinging ignition and nonliquid spray impingement, providing a reference for the further research and improvement of diesel engine combustor structure design. The effect of ambient density change on diesel spray mainly weakens radial air entrainment in the fuel injection. There was apparent impinging ignition at 11.37 g/m3 density, and the ignition time delay was 0.2 ms longer than that at 16.07 g/m3, corresponding to the 0 m altitude. Under high altitude with more significant density, the combustion is more intense under higher temperature. However, the larger flame diffusion area under low density leads to the larger soot distribution area and more considerable soot generation.

References

1.
Szedlmayer
,
M.
, and
Kweon
,
C.
,
2016
, “
Effect of Altitude Conditions on Combustion and Performance of a Multi-Cylinder Turbocharged Direct-Injection Diesel Engine
,”
SAE Technical Paper 2016-01-0742
.
2.
Liu
,
Z.
, and
Liu
,
J.
,
2021
, “
Experimental Investigation of Combustion Characteristics of a Single Cylinder Diesel Engine at Altitude
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102306
.
3.
Gu
,
Y.
,
Zhu
,
S.
,
Yang
,
M.
,
Zhang
,
H.
,
Deng
,
K.
, and
Yang
,
Z.
,
2020
, “
Analytical Model for Altitude Adaptability of Turbocharged Heavy-Duty Diesel Engine
,”
J. Energy Eng.
,
146
(
4
), p.
04020038
.
4.
Hao
,
C.
,
Ge
,
Y.
, and
Wang
,
X.
,
2020
, “
Heavy-Duty Diesel Engine Fuel Consumption Comparison With Diesel and Biodiesel Measured at Different Altitudes
,”
Int. J. Veh. Perform.
,
6
(
2
), p.
263
.
5.
Zhang
,
H.
,
Shi
,
L.
,
Deng
,
K.
,
Liu
,
S.
, and
Yang
,
Z.
,
2020
, “
Experiment Investigationon the Performance and Regulation Rule of Two-Stage Turbocharged Diesel Engine for Various Altitudes Operation
,”
Energy
,
192
.
6.
Wang
,
X.
,
Ge
,
Y.
,
Yu
,
L.
, and
Feng
,
X.
,
2013
, “
Comparison of Combustion Characteristics and Brake Thermal Efficiency of a Heavy-Duty Diesel Engine Fueled With Diesel and Biodiesel at High Altitude
,”
Fuel
,
107
, pp.
852
858
.
7.
Wang
,
X.
,
Ge
,
Y.
,
Yu
,
L.
, and
Feng
,
X.
,
2013
, “
Effects of Altitude on the Thermal Efficiency of a Heavy-Duty Diesel Engine
,”
Energy
,
59
(
3
), pp.
543
548
.
8.
He
,
C.
,
Ge
,
Y.
,
Ma
,
C.
,
Tan
,
J.
,
Liu
,
Z.
,
Chu
,
W.
,
Yu
,
L.
, and
Yan
,
D.
,
2011
, “
Emission Characteristics of a Heavy-Duty Diesel Engine at Simulated High Altitudes
,”
Sci. Total Environ.
,
409
(
17
), pp.
3138
3143
.
9.
Xin
,
W.
,
Hang
,
Y.
,
Ge
,
Y.
,
Yu
,
L.
,
Xu
,
Z.
,
Yu
,
C.
,
Shi
,
X.
, and
Liu
,
H.
,
2013
, “
On-Vehicle Emission Measurement of a Light-Duty Diesel Van at Various Speeds at High Altitude
,”
Atmos. Environ.
,
81
, pp.
263
269
.
10.
Benjumea
,
P.
,
Agudelo
,
J.
, and
Agudelo
,
A.
,
2009
, “
Effect of Altitude and Palm Oil Biodiesel Fuelling on the Performance and Combustion Characteristics of a HSDI Diesel Engine
,”
Fuel
,
88
(
4
), pp.
725
731
.
11.
Masataka
,
A.
,
2012
, “
Physics Behind Diesel Sprays
,”
ICLAA-2012
,
Heidelberg, Germany
,
Sept. 2–6
.
12.
Som
,
S.
,
Longman
,
D. E.
,
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2011
, “
Simulating Flame Lift-Off Characteristics of Diesel and Biodiesel Fuels Using Detailed Chemical-Kinetic Mechanisms and Large Eddy Simulation Turbulence Model
,”
ASME Internal Combustion Engine Division Fall Technical Conference
,
Morgantown, WV
,
Oct. 2–5
.
13.
Liu
,
Z.
, and
Liu
,
J.
,
2021
, “
Effect of Altitude on In-Cylinder Heat Transfer of a Heavy Duty Diesel Engine
,”
Proceedings of the ASME 2021 Heat Transfer Summer Conference Collocated with the ASME 2021 15th International Conference on Energy Sustainability
,
June 16–18
,
Virtual, Online,
V001T07A002
.
14.
Kan
,
Z.
,
Hu
,
Z.
,
Lou
,
D.
,
Cao
,
Z.
, and
Cao
,
J.
,
2017
, “
Effect of the Altitude on the Combustion Characteristics of a Low-Compression-Ratio Diesel Engine During the Start-Up Process
,”
Proc. Inst. Mech. Eng.
,
231
(
13
).
15.
Liu
,
J.
,
Ge
,
Y.
,
Wang
,
X.
,
Hao
,
L.
,
Tan
,
J.
,
Peng
,
Z.
,
Zhang
,
C.
,
Gong
,
H.
, and
Huang
,
Y.
,
2017
, “
On-Board Measurement of Particle Numbers and Their Size Distribution From a Light-Duty Diesel Vehicle: Influences of VSP and Altitude
,”
J. Environ. Sci.
,
57
(
7
), pp.
238
248
.
16.
Fang
,
L.
,
Lou
,
D.
,
Hu
,
Z.
, and
Tan
,
P.
,
2019
, “
The Emission Characteristics of a Diesel Engine During Start-Up Process at Different Altitudes
,”
Energies
,
12
(
18
), pp.
1
15
.
17.
Ghazikhani
,
M.
,
Ebrahim Feyz
,
M.
,
Mahian
,
O.
, and
Sabazadeh
,
A.
,
2013
, “
Effects of Altitude on the Soot Emission and Fuel Consumption of a Light-Duty Diesel Engine
,”
Transport
,
28
(
2
), pp.
130
139
.
18.
Kan
,
Z. C.
,
Lou
,
D. M.
,
Cao
,
Z. Z.
,
Hu
,
Z. Y.
,
Liu
,
S.
, and
Yang
,
Z. H.
,
2017
, “
Effects of Altitude on Combustion Characteristic During Cold Start of Heavy-Duty Diesel Engine
,”
Int. J. Automot. Technol.
,
18
(
2
), pp.
209
217
.
19.
Rakopoulos
,
C. D.
,
Rakopoulos
,
D. C.
,
Giakoumis
,
E. G.
, and
Kyritsis
,
D. C.
,
2004
, “
Validation and Sensitivity Analysis of a Two Zone Diesel Engine Model for Combustion and Emissions Prediction
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1471
1495
.
20.
Pal
,
M. K.
,
2019
, “
Effect of Ambient Fuel Vapour Concentration on the Liquid Length and Air-Fuel Mixing of an Evaporating Spray
,”
Fuel
,
256
.
21.
Sepret
,
V.
,
Bazile
,
R.
,
Marchal
,
M.
, and
Couteau
,
G.
,
2010
, “
Effect of Ambient Density and Orifice Diameter on Gas Entrainment by a Single-Hole Diesel Spray
,”
Exp. Fluids
,
49
(
6
), pp.
1293
1305
.
22.
Wang
,
X.
,
Pan
,
J.
,
Li
,
W.
,
Wei
,
H.
, and
Wu
,
H.
,
2020
, “
Optical Experiments on Diesel Knock for High Altitude Engines Under Spray Impingement Conditions
,”
Fuel
,
278
(
1
), p.
118268
.
23.
Rakopoulos
,
C. D.
,
Rakopoulos
,
D. C.
,
Giakoumis
,
E. G.
, and
Kyritsis
,
D. C.
,
2004
, “
Validation and Sensitivity Analysis of a Two Zone Diesel Engine Model for Combustion and Emissions Prediction
,”
Energy Convers. Manage.
,
45
(
9–10
), pp.
1471
1495
.
24.
Karthic
,
S. V.
,
Kumar
,
M. S.
,
Nataraj
,
G.
,
Kumar
,
S. V.
, and
Pradeep
,
R.
,
2020
, “
An Assessment on Injection Pressure and Timing to Reduce Emissions on Diesel Engine Powered by Novel Biodiesel
,”
J. Cleaner Prod.
,
255
.
25.
Agarwal
,
A. K.
,
Srivastava
,
D. K.
,
Dhar
,
A.
,
Maurya
,
R. K.
,
Shukla
,
P. C.
, and
Singh
,
A. P.
,
2013
, “
Effect of Fuel Injection Timing and Pressure on Combustion, Emissions and Performance Characteristics of a Single Cylinder Diesel Engine—Science Direct
,”
Fuel
,
111
(
3
), pp.
374
383
.
26.
Benajes
,
J.
,
Payri
,
R.
,
Bardi
,
M.
, and
Martí-Aldaraví
,
P.
,
2013
, “
Experimental Characterization of Diesel Ignition and Lift-Off Length Using a Single-Hole ECN Injector
,”
Appl. Therm. Eng.
,
58
(
1–2
), pp.
554
563
.
27.
Roy
,
M. M.
,
2009
, “
Effect of Fuel Injection Timing and Injection Pressure on Combustion and Odorous Emissions in DI Diesel Engines
,”
ASME. J. Energy Resour. Technol.
,
131
(
3
), p.
032201
.
28.
Bittle
,
J. A.
, and
Jacobs
,
T. J.
,
2012
, “
On the Relationship Between Fuel Injection Pressure and Two-Stage Ignition Behavior of Low Temperature Diesel Combustion
,”
ASME. J. Energy Resour. Technol.
,
134
(
4
), p.
042201
.
29.
Browne
,
K. R.
,
Partridge
,
I. M.
, and
Greeves
,
G.
,
1986
, “
Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine
,”
SAE Technical Paper 860223
.
30.
Siebers
,
D. L.
,
1999
, “
Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization
,”
SAE Technical Paper 1999-01-0528
, p.
108
.
31.
Zhang
,
Y.
,
Nishida
,
K.
,
Nomura
,
S.
, and
Ito
,
T.
,
2006
, “
Spray Characteristics of a Group-Hole Nozzle for Direct-Injection Diesel Engines
,”
Atomization Sprays
,
16
(
1
), pp.
35
50
.
32.
Dahms
,
R. N.
,
Manin
,
J.
,
Pickett
,
L. M.
, and
Oefelein
,
J. C.
,
2013
, “
Understanding High-Pressure Gas-Liquid Interface Phenomena in Diesel Engines
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
1667
1675
.
33.
Zhang
,
Y.
,
Jia
,
M.
,
Liu
,
H.
, and
Xie
,
M.
,
2016
, “
Development of an Improved Liquid Film Model for Spray/Wall Interaction Under Engine-Relevant Conditions
,”
Int. J. Multiphase Flow
,
79
, pp.
74
87
.
34.
Jafarmadar
,
S.
,
Khalilarya
,
S.
,
Shafee
,
S.
, and
Barzegar
,
R.
,
2009
, “
Modeling the Effect of Spray/Wall Impingement on Combustion Process and Emission of di Diesel Engine
,”
Therm. Sci.
,
13
(
3
), pp.
23
33
.
35.
Tang
,
Y.
,
Lou
,
D.
,
Wang
,
C.
,
Tan
,
P. Q.
, and
Fang
,
L.
,
2020
, “
Study of Visualization Experiment on the Influence of Injector Nozzle Diameter on Diesel Engine Spray Ignition and Combustion Characteristics
,”
Energies
,
13
(
20
), p.
5337
.
36.
Tang
,
Y.
,
Lou
,
D.
,
Wang
,
C.
,
Tan
,
P.
, and
Fang
,
L.
,
2020
, “
Joint Study of Impingement Combustion Simulation and Diesel Visualization Experiment of Variable Injection Pressure in Constant Volume Vessel
,”
Energies
,
13
(
23
), p.
6210
.
37.
Lillo
,
P. M.
,
Pickett
,
L. M.
,
Persson
,
H.
,
Andersson
,
O.
, and
Kook
,
S.
,
2012
, “
Diesel Spray Ignition Detection and Spatial/Temporal Correction
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1330
1346
.
38.
Gaydon
,
A. G.
,
2013
,
The Spectroscopy of Flames
,
Springer
,
Germany
.
39.
Dec
,
J. E.
, and
Espey
,
C.
,
1998
, “
Chemiluminescence Imaging of Autoignition in a di Diesel Engine
,”
SAE Technical Paper 982685
.
40.
Ma
,
Y. J.
,
Huang
,
R. H.
,
Deng
,
P.
, and
Huang
,
S.
,
2015
, “
The Development and Application of an Automatic Boundary Segmentation Methodology to Evaluate the Vaporizing Characteristics of Diesel Spray Under Engine-Like Conditions
,”
Meas. Sci. Technol.
,
26
(
4
), p.
045004
.
41.
Siebers
,
D. L.
, and
Higgins
,
B.
,
2001
, “
Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions
,”
SAE Technical Paper 2001-01-0530
.
42.
Bardi
,
M.
,
Payri
,
R.
,
Malbec
,
L. M.
,
Bruneaux
,
G.
, and
Genzale
,
C.
,
2012
, “
Engine Combustion Network: Comparison of Spray Development, Vaporization, and Combustion in Different Combustion Vessels
,”
Atomization Sprays
,
22
(
4
), pp.
807
842
.
43.
Ha
,
J. Y.
,
Lida
,
N.
,
Sato
,
G. T.
,
Hayashi
,
A.
, and
Tanabe
,
H.
,
1984
, “
Experimental Investigation of the Entrainment Into Diesel Spray
,”
SAE Technical Paper 841078
.
44.
Wang
,
X.
,
Huang
,
Z.
,
Kuti
,
O. A.
,
Zhang
,
W.
, and
Nishida
,
K.
,
2010
, “
Experimental and Analytical Study on Biodiesel and Diesel Spray Characteristics Under Ultra-High Injection Pressure
,”
Int. J. Heat Fluid Flow
,
31
(
4
), pp.
659
666
.
45.
Wang
,
C.
,
Lou
,
D.
,
Tan
,
P.
,
Hu
,
Z.
, and
Yang
,
Z.
,
2018
, “
Experimental Study on Free Diesel Spray Characteristics at Different Altitudes
,”
SAE Technical Paper2018-01-0308
.
46.
Poola
,
R. B.
, and
Sekar
,
R.
,
2003
, “
Reduction of NOX and Particulate Emissions by Using Oxygen-Enriched Combustion Air in a Locomotive Diesel Engine
,”
ASME J. Eng. Gas Turbines Power
,
125
(
2
), pp.
524
533
.
You do not currently have access to this content.