Abstract

These days, hydraulic fracturing is widely applied in the gas reservoir development with low permeability, which can improve the production of the well and enhance the recovery. This paper discussed the productivity characteristics of multiple-fractured horizontal wells (MFHWs) with three to five fractures by the use of the basic theory of potential. First, the seepage model of fractured horizontal wells with infinite inflow fractures and the stable and unstable seepage models within the fractures are analyzed. Second, the distribution of potential and pressure was quantitatively simulated for a given gas reservoir (mainly 3–5 fractures), and the potential and pressure at any point were derived. Finally, the fracture parameters of the MFHWs were optimized in terms of two evaluation indexes, the average fracture production and the single well production by the use of an orthogonal test. The optimized fracture spacing is 100–150 m, and the longer the fracture width and fracture length, the better production performance. The research results have theoretical significance and provide reference for the selection of fracture parameters for horizontal wells in low-permeability gas reservoirs and the productivity evaluation of MFHWs.

References

1.
Ran
,
L.
,
Gaomin
,
L.
,
Jinzhou
,
Z.
,
Lan
,
R.
, and
Jianfa
,
W.
,
2022
, “
Productivity Model of Shale Gas Fractured Horizontal Well Considering Complex Fracture Morphology
,”
J. Pet. Sci. Eng.
,
208
, p.
109511
.
2.
Lu
,
T.
,
Shimin
,
L.
, and
Zhiping
,
L.
,
2019
, “
A New Approach to Model Shale Gas Production Behavior by Considering Coupled Multiple Flow Mechanisms for Multiple Fractured Horizontal Well
,”
Fuel
,
237
, pp.
283
297
.
3.
Zhao
,
Y. L.
,
Zhang
,
L. H.
, and
Shan
,
B. C.
,
2018
, “
Mathematical Model of Fractured Horizontal Well in Shale Gas Reservoir With Rectangular Stimulated Reservoir Volume
,”
J. Nat. Gas Sci. Eng.
,
59
, pp.
67
79
.
4.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Li
,
H. A.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
5.
Li
,
J.
, and
Guo
,
B.
,
2014
, “
Yin Feng an Analytical Solution of Fracture-Induced Stress and Its Application in Shale Gas Exploitation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023102
.
6.
Jia
,
A.
,
Wei
,
Y.
,
Liu
,
C.
,
Wang
,
J.
,
Qi
,
Y.
,
Jia
,
C.
, and
Li
,
B.
,
2020
, “
A Dynamic Prediction Model of Pressure-Control Production Performance of Shale Gas Fractured Horizontal Wells and Its Application
,”
Nat. Gas Ind. B
,
7
, pp.
71
81
.
7.
Guo
,
J.
,
Zeng
,
J.
,
Wang
,
X.
, and
Zeng
,
F.
,
2016
,
Analytical Model for Multifractured Horizontal Wells in Heterogeneous Shale Reservoirs
.
Paper Presented at the SPE Asia Pacific Oil & Gas Conference and Exhibition
,
Perth, Australia
,
Oct. 25–27
.
8.
Yongzheng
,
C.
,
Ruizhong
,
J.
,
Qiong
,
W.
, and
Xiuwei
,
L.
,
2021
, “
Production Performance Analysis of Multi-Fractured Horizontal Well in Shale Gas Reservoir Considering Space Variable and Stress-Sensitive Fractures
,”
J. Pet. Sci. Eng.
,
207
, pp.
1
15
.
9.
Cui
,
Y.
,
Jiang
,
R.
, and
Gao
,
Y.
,
2021
, “
Blasingame Decline Analysis for Multi-Fractured Horizontal Well in Tight Gas Reservoir With Irregularly Distributed and Stress-Sensitive Fractures
,”
J. Nat. Gas Sci. Eng..
,
88
, pp.
1
13
.
10.
Sun
,
H.
,
Ouyang
,
W.
,
Zhang
,
M.
,
Tang
,
H.
,
Chen
,
C.
,
Ma
,
X.
, and
Fu
,
Z.
,
2018
, “
Advanced Production Decline Analysis of Tight Gas Wells With Variable Fracture Conductivity
,”
Pet. Explor. Dev.
,
2018
(
45
), pp.
472
480
.
11.
Tian
,
L.
,
Feng
,
B.
, and
Zheng
,
S.
,
2019
, “
Performance Evaluation of Gas Production With Consideration of Dynamic Capillary Pressure in Tight Sandstone Reservoirs
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022902
.
12.
Zhang
,
F.
, and
Yang
,
D.
,
2017
, “
Effects of Non-Darcy Flow and Penetrating Ratio on Performance of Horizontal Wells With Multiple Fractures in a Tight Formation
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032903
.
13.
Chai
,
X.
,
Tian
,
L.
,
Zhang
,
M.
,
Shao
,
H.
,
Wang
,
J.
, and
Zhang
,
K.
,
2022
, “
Production Characteristics, Evaluation, and Prediction of CO2 Water-Alternating-Gas Flooding in Tight Oil Reservoir
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
033006
.
14.
Yarveicy
,
H.
,
Habibi
,
A.
,
Pegov
,
S.
,
Zolfaghari
,
A.
, and
Dehghanpour
,
H.
,
2018
,
Enhancing Oil Recovery by Adding Surfactants in Fracturing Water: A Montney Case Study
.
Proceedings of the SPE Canada Unconventional Resources Conference
,
Calgary, Alberta
,
Mar. 13–14
.
15.
Zhaoxin
,
L.
,
Lihua
,
Z.
, and
Linsong
,
C.
,
1994
, “
Study on the Capacity of Fractured Horizontal Wells
,”
Pet. Univ.
,
18
(
2
), pp.
43
46
.
16.
Zhengfu
,
N.
,
Shugang
,
H.
,
Linsong
,
C.
, and
Chunlan
,
L.
,
2002
, “
Capacity Calculation Method for Fractured Horizontal Wells in Low Permeability Oil and Gas Reservoirs
,”
Acta Pet. Sin.
,
23
(
2
), pp.
68
72
.
17.
Shugang
,
H.
,
Linsong
,
C.
, and
Zhengfu
,
N.
,
2002
, “
A New Method for Capacity Prediction of Fractured Horizontal Wells in Gas Reservoirs
,”
J. Pet. Univ.
,
26
(
4
), pp.
36
41
.
18.
Congxin
,
S.
,
Xiaoping
,
L.
,
Haifei
,
Q.
, and
Xiaoqing
,
W.
,
2008
, “
Study on the Unsteady Productivity Model of Horizontal Well With Multiple Transversal Fracture and Calculation Method
,”
Well Testing
,
17
(
6
), pp.
5
7
.
19.
Jun
,
H.
,
Zifei
,
F.
,
Congge
,
H.
,
Angang
,
Z.
,
Fengjun
,
H.
,
Xinshun
,
Z.
,
Li
,
L.
, and
Likun
,
X.
,
2021
, “
Non-Steady Productivity Analysis Model for Fractured Horizontal Well in Closed Boundary
,”
Fault Block Oil Gas Field
,
28
(
3
), pp.
369
373
.
20.
Wu
,
Y.
,
Huang
,
Z.
,
Zhao
,
K.
,
Zeng
,
W.
,
Gu
,
Q.
, and
Zhang
,
R.
,
2020
, “
Unsteady Seepage Solutions for Hydraulic Fracturing Around Vertical Wellbores in Hydrocarbon Reservoirs
,”
Int J Hydrogen Energy.
,
45
(
16
), pp.
9496
9503
.
21.
Jiangaung
,
W.
,
Zhiming
,
W.
, and
Xin
,
Z.
,
2009
, “
Influence of Fissure Feature Parameters on the Productivity of Fractured Horizontal Wells and the Ranking Method
,”
J. Hydrodyn.
,
24
(
5
), pp.
631
638
.
22.
Zhiming
,
W.
,
Zhenlin
,
Q.
,
Jianguang
,
W.
, and
Hui
,
J.
,
2010
, “
Influence of Fracture Parameters on Inflow Performance of Fractured Horizontal Wells
,”
J. China Univ. Pet.
,
34
(
1
), pp.
73
78
.
23.
Yuguang
,
Z.
,
2010
, “
Optimization Analysis of the Fracture Parameters of Fractured Horizontal Well in Gas Reservoir
,”
Sci. Technol. Eng.
,
10
(
12
), pp.
2861
2865
.
24.
Ren
,
J.
,
Gao
,
Y.
,
Fang
,
N.
, and
Wang
,
D.
,
2021
, “
Pressure Behavior of Multi-Stage Fractured Horizontal Well in a Laterally Non-Uniform Reservoir
,”
J. Pet. Sci. Eng.
,
207
, pp.
1
16
.
25.
Chen
,
Z.
,
Liao
,
X.
, and
Zeng
,
L.
,
2020
, “
Pressure Transient Analysis in the Child Well With Complex Fracture Geometries and Fracture Hits by a Semi-Analytical Model
,”
J. Pet. Sci. Eng.
, p.
107119
.
26.
Wang
,
J.
,
Jia
,
A.
,
Wei
,
Y.
,
Luo
,
W.
, and
Yuan
,
H.
,
2018
, “
Semi-Analytical Simulation of Transient Flow Behavior for Complex Fracture Network With Stress-Sensitive Conductivity
,”
J. Pet. Sci. Eng.
,
171
, pp.
1191
1210
.
27.
Dejam
,
M.
,
Hassanzadeh
,
H.
, and
Chen
,
Z.
,
2018
, “
Semi-Analytical Solution for Pressure Transient Analysis of a Hydraulically Fractured Vertical Well in a Bounded Dual-Porosity Reservoir
,”
J. Hydrol.
,
565
, pp.
289
301
.
28.
Seth
,
P.
,
Manchanda
,
R.
,
Kumar
,
A.
, and
Sharma
,
M. M.
,
2021
, “
Analyzing Pressure Interference Between Horizontal Wells During Fracturing
,”
J. Pet. Sci. Eng.
,
204
, pp.
1
11
.
29.
Asadi
,
M. B.
,
Dejam
,
M.
, and
Zendehboudi
,
S.
,
2020
, “
Semi-Analytical Solution for Productivity Evaluation of a Multi-Fractured Horizontal Well in a Bounded Dual-Porosity Reservoir
,”
J. Hydrol.
,
581
, p.
124288
.
30.
Tian
,
F.
,
Wang
,
X.
, and
Xu
,
W.
,
2019
, “
A Semi-Analytical Model for Multiple-Fractured Horizontal Wells in Heterogeneous Gas Reservoirs
,”
J. Pet. Sci. Eng.
,
183
, pp.
1
12
.
31.
Ruofan
,
S.
,
Jinghong
,
H.
,
Yuan
,
Z.
, and
Zhiping
,
L.
,
2020
, “
A Semi-Analytical Model for Investigating the Productivity of Fractured Horizontal Wells in Tight Oil Reservoirs With Micro-Fractures
,”
J. Pet. Sci. Eng.
,
186
, p.
106781
.
32.
Wang
,
W. D.
,
Shahvali
,
M.
, and
Su
,
Y. L.
,
2015
, “
A Semi-Analytical Fractal Model for Production From Tight Oil Reservoirs With Hydraulically Fractured Horizontal Wells
,”
Fuel.
,
158
, pp.
612
618
.
33.
Zhang
,
Q.
,
Su
,
Y. L.
, and
Wang
,
W. D.
,
2017
, “
Performance Analysis of Fractured Wells With Elliptical SRV in Shale Reservoirs
,”
J. Nat. Gas Sci. Eng.
,
45
, pp.
380
390
.
34.
Longlong
,
L.
,
Jun
,
Y.
,
Yang
,
L.
,
Minglu
,
W.
,
Qingdong
,
Z.
, and
Ranran
,
L.
,
2014
, “
Productivity Calculation and Distribution of Staged Multi-Cluster Fractured Horizontal Wells
,”
Pet. Explor. Dev.
,
41
(
4
), pp.
457
461
.
35.
Zhang
,
W.
, and
Xu
,
J.
,
2021
, “
A Generalized Analytical Model for Hydrocarbon Production Using Multi-Fractured Horizontal Well With Non-Uniform Permeability Distributions
,”
Int. J. Hydrogen Energy
,
46
(
1
), pp.
324
340
.
36.
Long
,
R.
,
Yuliang
,
S.
, and
Wendong
,
W.
,
2013
, “
Seepage Characteristics and Productivity Distribution of Segmented Multi-Cluster Fractured Horizontal Wells
,”
J. Xi’an Shiyou Univ. Nat. Sci.
,
28
(
4
), pp.
55
59
.
37.
Fanhui
,
Z.
,
Mingkai
,
M.
,
Jiangang
,
Z.
,
Ruquan
,
Z.
,
Jibiao
,
L.
, and
Jianhua
,
X.
,
2018
, “
Study of Horizontal Well Production in Non-Homogeneous Low Permeability Gas Reservoir After Fracturing
,”
Drill. Prod. Technol.
,
41
(
4
), pp.
53
55
.
38.
Wu Z
,
D.
,
Cui C
,
L.
,
Cheng
,
X.
, and
Wang
,
Z.
,
2020
, “
A Numerical Model for Fractured Horizontal Well and Production Characteristics
,”
J. Pet. Sci. Eng.
,
187
, pp.
1
16
.
39.
Yandong
,
G.
,
Weihong
,
W.
,
Hua
,
L.
, and
Xiaohu
,
H.
,
2018
, “
Research on the Production Influencing Factors of Shale Gas Multi-Stage Fractured Horizontal Well
,”
Bull. Sci. Technol.
,
34
(
4
), pp.
72
80
.
40.
Asadi
,
M. B.
,
Ameri
,
M. J.
,
Amini
,
S.
, and
Zendehboudi
,
S.
,
2018
, “
Determination of Performance of Multiple-Fracture Horizontal Well by Incorporating Fracture-Fluid Leakoff
,”
SPE Reservoir Eval. Eng.
,
21
(
04
), pp.
907
926
.
41.
Lv
,
Z.
,
Li
,
S.
, and
Liu
,
G.
,
2013
, “
Factors Affecting the Productivity of a Multifractured Horizontal Well
,”
Pet. Sci. Technol.
,
31
(
22
), pp.
2325
2334
.
42.
Li
,
P. Y.
,
Hao
,
M. Q.
, and
Hu
,
J. H.
,
2018
, “
A New Production Decline Model for Horizontal Wells in Low-Permeability Reservoirs
,”
J. Pet. Sci. Eng.
,
171
, pp.
340
352
.
43.
Luis
,
F.
,
Ayala
,
H.
, and
Peng
,
Y.
,
2013
, “
Density-Based Decline Performance Analysis of Natural Gas Reservoirs Using a Universal Type Curve
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042701
.
44.
Ayala
,
H. L. F.
, and
Ye
,
P.
,
2012
, “
Unified Decline Type-Curve Analysis for Natural gas Wells in Boundary-Dominated Flow
,”
SPE J.
,
18
(
1
), pp.
97
113
.
You do not currently have access to this content.