Abstract

Gasoline compression ignition (GCI) is a cost-effective approach to achieving diesel-like efficiencies with low emissions. The fundamental architecture of the two-stroke Achates Power Opposed-Piston (OP) Engine enables GCI by decoupling piston motion from cylinder scavenging, allowing for flexible and independent control of cylinder residual fraction and temperature leading to improved low-load combustion. In addition, the high peak cylinder pressure and noise challenges at high-load operation are mitigated by the lower brake mean effective pressure (BMEP) operation and faster heat release for the same pressure rise rate of the OP Engine. These advantages further solidify the performance benefits of the OP Engine and demonstrate the near-term feasibility of advanced combustion technologies, enabled by the opposed-piston architecture. This paper presents initial results from steady-state testing on a brand new 2.7-L OP GCI multi-cylinder engine (MCE) designed for light-duty truck applications. Successful GCI operation calls for a high compression ratio (CR), leading to higher combustion stability at low loads, higher efficiencies, and lower cycle HC + NOX emissions. Initial results show a cycle average brake thermal efficiency (BTE) of 31.7%, which is already greater than 11% conventional engines, after only ten weeks of testing. Emissions results suggest that Tier 3 Bin 160 levels can be achieved using a traditional diesel after-treatment system. Combustion noise was well controlled at or below the United States Council for Automotive Research limits. In addition, initial results on catalyst light-off mode with GCI are also presented.

References

1.
Herold
,
R. E.
,
Wahl
,
M. H.
,
Regner
,
G.
,
Lemke
,
J. U.
, and
Foster
,
D. E.
,
2011
, “
Thermodynamic Benefits of Opposed-Piston Two-Stroke Engines
,” SAE Paper No. 2011-01-2216.
2.
Redon
,
F.
,
Kalebjian
,
C.
,
Kessler
,
J.
,
Rakovec
,
N.
,
Headley
,
J.
,
Regner
,
G.
, and
Koszewnik
,
J.
,
2014
,
Meeting Stringent 2025 Emissions and Fuel Efficiency Regulations With an Opposed-Piston, Light-Duty Diesel Engine
,” Paper No. SAE 2014-01-1187.
3.
Regner
,
G.
,
Johnson
,
D.
,
Koszewnik
,
J.
,
Dion
,
E.
,
Redon
,
F.
, and
Fromm
,
L.
,
2013
, “
Modernizing the Opposed Piston, Two Stroke Engine for Clean, Efficient Transportation
,” SAE Paper No. 2013-26-0114.
4.
Warey
,
A.
,
Gopalakrishnan
,
V.
,
Potter
,
M.
,
Mattarelli
,
E.
, and
Rinaldini
,
C. A.
,
2016
, “
An Analytical Assessment of the CO2 Emissions Benefit of Two-Stroke Diesel Engines
,” SAE Paper No. 2016-01-0659.
5.
Mattarelli
,
E.
,
Rinaldini
,
C. A.
,
Savioli
,
T.
,
Warey
,
A.
,
Gopalakrishnan
,
V.
, and
Potter
,
M.
,
2018
, “
An Innovative Hybrid Powertrain for Small and Medium Boats
,” SAE Paper No. 2018-01-0373.
6.
Mattarelli
,
E.
,
Cantore
,
G.
,
Rinaldini
,
C. A.
, and
Savioli
,
T.
,
2017
, “
Combustion System Development of an Opposed Piston 2-Stroke Diesel Engine
,”
Energy Procedia
,
126
, pp.
1003
1010
.
7.
Kalebjian
,
C.
,
Redon
,
F.
, and
Wahl
,
M. H.
, 2012, “
Low Emissions and Rapid Catalyst Light-Off Capability for Upcoming Emissions Regulations With an Opposed-Piston, Two-Stroke Diesel Engine
,”
Proceedings of the Emissions 2012 Conference
,
Ypsilanti, MI
,
June 12–13
, Volume 68.
8.
Redon
,
F.
,
Sharma
,
A.
, and
Headley
,
J.
,
2015
, “
Multi-Cylinder Opposed Piston Transient and Exhaust Temperature Management Test Results
,” SAE Paper No. 2015-01-1251.
9.
Patil
,
S.
,
Ghazi
,
A.
,
Redon
,
F.
,
Sharp
,
C.
,
Schum
,
D.
, and
Headley
,
J.
,
2018
, “
Cold Start HD FTP Test Results on Multi-Cylinder Opposed-Piston Engine Demonstrating Rapid Exhaust Enthalpy Rise to Achieve Ultra Low NOx
,” SAE Paper No. 2018-01-1378.
10.
Regner
,
G.
,
Koszewnik
,
J.
, and
Venugopal
,
R.
,
2014
, “
Optimizing Combustion in an Opposed-Piston, Two-Stroke (OP2S) Diesel Engine
,”
Internationaler Motorenkongress 2014: Antriebstechnik im Fahrzeug
,
J.
Liebl
, ed.,
Springer Vieweg
,
Wiesbaden
, pp.
657
659
.
11.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,” SAE Paper No. 2009-01-1442.
12.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2011
, “
Gasoline Direct Injection Compression Ignition (GDCI)—Diesel-Like Efficiency With Low CO2 Emissions
,”
SAE Int. J. Engines
,
4
(
1
), pp.
2010
2022
.
13.
Sellnau
,
M.
,
Hoyer
,
K.
,
Moore
,
W.
,
Foster
,
M.
,
Sinnamon
,
J.
, and
Klemm
,
W.
,
2018
, “
Advancement of GDCI Engine Technology for US 2025 CAFE and Tier 3 Emissions
,” SAE Paper No. 2018-01-0901.
14.
Kalghatgi
,
G.
,
Risberg
,
P.
, and
Ångström
,
H.-E.
,
2007
, “
Partially Pre-Mixed Auto-Ignition of Gasoline to Attain Low Smoke and Low NOx at High Load in a Compression Ignition Engine and Comparison With a Diesel Fuel
,” SAE Paper No. 2007-01-23.
15.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D. E.
,
Reitz
,
R. D.
, and
Durrett
,
R.
,
2012
, “
Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection
,”
SAE Int. J. Eng.
,
5
(
3
), pp.
1109
1132
.
16.
Manente
,
V.
,
Zander
,
C.-G.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2010
, “
An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion
,” SAE Paper No. 2010-01-2198.
17.
Subramanian
,
S. N.
, and
Ciatti
,
S.
,
2011
, “
Low Cetane Fuels in Compression Ignition Engine to Achieve LTC
,”
Proceedings of the ASME 2011 Internal Combustion Engine Division Fall Technical Conference
,
Morgantown, WV
,
Oct. 2–5
, pp.
317
326
.
18.
Dec
,
J. E.
,
Yang
,
Y.
,
Dernotte
,
J.
, and
Ji
,
C.
,
2015
, “
Effects of Gasoline Reactivity and Ethanol Content on Boosted, Premixed and Partially Stratified Low-Temperature Gasoline Combustion (LTGC)
,”
SAE Int. J. Engines
,
8
(
3
), pp.
935
955
.
19.
Benajes
,
J.
,
Martin
,
J.
,
Novella
,
R.
, and
De Lima
,
D.
,
2014
, “
Analysis of the Load Effect on the Partially Premixed Combustion Concept in a 2-Stroke HSDI Diesel Engine Fueled With Conventional Gasoline
,” SAE Paper No. 2014-01-1291.
20.
Rose
,
K. D.
,
Ariztegui
,
J.
,
Cracknell
,
R. F.
,
Dubois
,
T.
,
Hamje
,
H. D. C.
,
Pellegrini
,
L.
,
Rickeard
,
D. J.
,
Heuser
,
B.
,
Schnorbus
,
T.
, and
Kolbeck
,
A. F.
,
2013
, “
Exploring a Gasoline Compression Ignition (GCI) Engine Concept
,” SAE Paper No. 2013-01-0911.
21.
Paz
,
J.
,
Staaden
,
D.
, and
Kokjohn
,
S.
,
2018
, “
Gasoline Compression Ignition Operation of a Heavy-Duty Engine at High Load
,” SAE Paper No. 2018-01-0898.
22.
Kavuri
,
C.
, and
Kokjohn
,
S. L.
,
2018
, “
Computational Study to Identify Feasible Operating Space for a Mixed Mode Combustion Strategy—A Pathway for Premixed Compression Ignition High Load Operation
,”
ASME J. Energy Resour. Technol.
,
140
(
8
), p.
082201
.
23.
Dempsey
,
A.
,
Curran
,
S.
,
Wagner
,
R.
, and
Cannella
,
W.
,
2015
, “
Effect of Premixed Fuel Preparation for Partially Premixed Combustion With a Low Octane Gasoline on a Light-Duty Multi-Cylinder Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111506
.
24.
Zhang
,
Y.
,
Voice
,
A.
,
Pei
,
Y.
,
Traver
,
M.
, and
Cleary
,
D.
,
2018
, “
A Computational Investigation of Fuel Chemical and Physical Properties Effects on Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
,”
ASME J. Energy Resour. Technol.
,
140
(
10
), p.
102202
.
25.
Kavuri
,
C.
,
Singh
,
S.
,
Rajan Krishnan
,
S.
,
Kumar Srinivasan
,
K.
, and
Ciatti
,
S.
,
2014
, “
Computational Analysis of Combustion of High and Low Cetane Fuels in a Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
12
), p.
121506
.
26.
Redon
,
F.
,
2016
, “
Exploring the Next Frontier in Efficiency With the Opposed-Piston Engine
,” SIA Powertrain, Rouen, France. R-2016-01-29.
27.
Hanson
,
R.
,
Strauss
,
S.
,
Redon
,
F.
, and
Salvi
,
A.
,
2017
, “
Progress in Light-Duty OPGCI Engine Design and Testing
,” SIA Powertrain, Versailles, France.
28.
Kolodziej
,
C. P.
,
Sellnau
,
M.
,
Cho
,
K.
, and
Cleary
,
D.
,
2016
, “
Operation of a Gasoline Direct Injection Compression Ignition Engine on Naphtha and E10 Gasoline Fuels
,”
SAE Int. J. Engines
,
9
(
2
), pp.
979
1001
.
29.
Sharma
,
A.
, and
Redon
,
F.
,
2016
, “
Multi-Cylinder Opposed-Piston Engine Results on Transient Test Cycle
,” SAE Paper No. 2016-01-1019.
30.
Hanson
,
R.
,
Salvi
,
A.
,
Redon
,
F.
, and
Regner
,
G.
,
2018
, “
Experimental Comparison of GCI and Diesel Combustion in a Medium-Duty Opposed-Piston Engine
,”
Proceedings of the ASME ICEF 2018 Internal Combustion Engine Division Fall Technical Conference Volume 1: Large Bore Engines; Fuels; Advanced Combustion
,
San Diego, CA
,
Nov. 4–7
, ASME, p. V001T03A023.
You do not currently have access to this content.