Abstract

This paper presents the results of numerical simulations of organic Rankine cycles (ORCs) for low-grade heat source temperature in the range of 373–653 K for 20 working fluids. The goal of the study is to determine the importance of the level of the source temperature in the selection of working fluids and operation conditions. As a performance indicator, a function of the net power, the internal and external exergy efficiencies, and the exergy efficiency of the evaporator is used. The results show that there is a strong correlation between the level of the source temperature and the critical temperature, between the expander inlet temperature and the source temperature, and between the expander inlet pressure and the critical pressure of the working fluids tested. The study shows that once the source temperature level is known, it is possible to select the working fluid and the conditions at the expander entrance.

References

1.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
. 10.1016/j.applthermaleng.2008.12.025
2.
Chacartegui
,
R.
,
Sánchez
,
D.
,
Muñoz
,
J.
, and
Sánchez
,
T.
,
2009
, “
Alternative ORC Bottoming Cycles for Combined Cycle Power Plants
,”
App. Energy
,
86
(
10
), pp.
2162
2170
. 10.1016/j.apenergy.2009.02.016
3.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy. Rev.
,
14
(
9
), pp.
3059
3067
. 10.1016/j.rser.2010.07.006
4.
Bao
,
J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
. 10.1016/j.rser.2013.03.040
5.
Micheli
,
D.
,
Pinamonti
,
P.
,
Reini
,
M.
, and
Taccan
,
R.
,
2013
, “
Performance Analysis and Working Fluid Optimization of a Cogenerative Organic Rankine Cycle Plant
,”
ASME J. Energy Res. Technol.
,
135
(
2
), p.
021601
. 10.1115/1.4023098
6.
Lecompte
,
S.
,
Huisseune
,
H.
,
van den Broek
,
M.
,
Vanslambrouck
,
B.
, and
De Paepe
,
M.
,
2015
, “
Review of Organic Rankine Cycle (ORC) Architectures for Waste Heat Recovery
,”
Ren. Sus. Energy Rev.
,
47
, pp.
448
461
. 10.1016/j.rser.2015.03.089
7.
Lakew
,
A.
, and
Bolland
,
O.
,
2010
, “
Working Fluids for Low-Temperature Heat Source
,”
Appl. Therm. Eng.
,
30
(
10
), pp.
1262
1268
. 10.1016/j.applthermaleng.2010.02.009
8.
Wang
,
D.
,
Ling
,
X.
,
Peng
,
H.
,
Liu
,
L.
, and
Tao
,
L.
,
2013
, “
Efficiency and Optimal Performance Evaluation of Organic Rankine Cycle for Low Grade Waste Heat Power Generation
,”
Energy
,
50
, pp.
343
352
. 10.1016/j.energy.2012.11.010
9.
Tchanche
,
B. F.
,
Pétrissans
,
M.
, and
Papadakis
,
G.
,
2014
, “
Heat Resources and Organic Rankine Cycle Machines
,”
Renewable Sustainable Energy Rev.
,
39
, pp.
1185
1199
. 10.1016/j.rser.2014.07.139
10.
Li
,
D.
,
Zhang
,
S.
, and
Wang
,
G.
,
2015
, “
Selection of Organic Rankine Cycle Working Fluids in the Low-Temperature Waste Heat Utilization
,”
J. Hydrodyn., Ser. B
,
27
(
3
), pp.
458
464
. 10.1016/S1001-6058(15)60504-2
11.
Park
,
B.-S.
,
Usman
,
M.
,
Imran
,
M.
, and
Pesyridis
,
A.
,
2018
, “
Review of Organic Rankine Cycle Experimental Data Trends
,”
Energy Convers. Manage.
,
173
, pp.
679
691
. 10.1016/j.enconman.2018.07.097
12.
Xia
,
X. X.
,
Qi
,
W.Z.
,
Hua
,
H.Y.
, and
Jun
,
Z.N.
,
2018
, “
A Novel Comprehensive Evaluation Methodology of Organic Rankine Cycle for Parameters Design and Working Fluid Selection
,”
Appl. Therm. Eng.
,
143
, pp.
283
292
. 10.1016/j.applthermaleng.2018.07.061
13.
Long
,
R.
,
Bao
,
Y. J.
,
Huang
,
X. M.
, and
Liu
,
W.
,
2014
, “
Exergy Analysis and Working Fluid Selection of Organic Rankine Cycle for Low Grade Waste Heat Recovery
,”
Energy
,
73
, pp.
475
483
. 10.1016/j.energy.2014.06.040
14.
Xu
,
J.
, and
Yu
,
C.
,
2014
, “
Critical Temperature Criterion for Selection of Working Fluids for Subcritical Pressure Organic Rankine Cycles
,”
Energy
,
74
, pp.
719
733
. 10.1016/j.energy.2014.07.038
15.
Vivian
,
J.
,
Manente
,
G.
, and
Lazzaretto
,
A.
,
2015
, “
A General Framework to Select Working Fluid and Configuration of ORCs for Low-to-Medium Temperature Heat Sources
,”
Appl. Energy
,
156
, pp.
727
746
. 10.1016/j.apenergy.2015.07.005
16.
Brown
,
J. S.
,
Brignoli
,
R.
, and
Quine
,
T.
,
2015
, “
Parametric Investigation of Working Fluids for Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
90
, pp.
64
74
. 10.1016/j.applthermaleng.2015.06.079
17.
Xu
,
H.
,
Gao
,
N.
, and
Zhu
,
T.
,
2016
, “
Investigation on the Fluid Selection and Evaporation Parametric Optimization for Sub- and Supercritical Organic Rankine Cycle
,”
Energy
,
96
, pp.
59
68
. 10.1016/j.energy.2015.12.040
18.
Zhai
,
H.
,
An
,
Q.
, and
Shi
,
L.
,
2016
, “
Analysis of the Quantitative Correlation Between the Heat Source Temperature and the Critical Temperature of the Optimal Pure Working Fluid for Subcritical Organic Rankine Cycles
,”
Applied Thermal Eng.
,
64
, pp.
790
805
. 10.1016/j.rser.2016.06.076
19.
Yang
,
L.
,
Gong
,
M.
,
Guo
,
H.
,
Dong
,
X.
,
Shen
,
J.
, and
Wu
,
J.
,
2016
, “
Effects of Critical and Boiling Temperatures on System Performance and Fluid Selection Indicator for Low Temperature Organic Rankine Cycles
,”
Energy
,
109
, pp.
830
844
. 10.1016/j.energy.2016.05.021
20.
Uusitalo
,
A.
,
Honkatukia
,
J.
,
Turunen-Saaresti
,
T.
, and
Grönman
,
A.
,
2018
, “
Thermodynamic Evaluation on the Effect of Working Fluid Type and Fluids Critical Properties on Design and Performance of Organic Rankine Cycles
,”
J. Cleaner Prod.
,
188
, pp.
253
263
. 10.1016/j.jclepro.2018.03.228
21.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
,
NIST Reference Fluid Thermodynamics and Transport Properties-REFPROP Version 9.1, User’s Guide
.
ACMD, N. I. of Standards and Technology
,
Boulder, CO
.
22.
Liu
,
W.
,
Meinel
,
D.
,
Gleinser
,
M.
,
Wieland
,
C.
, and
Spliethoff
,
H.
,
2015
, “
Optimal Heat Source Temperature for Thermodynamic Optimization of a Sub-Critical Organic Rankine Cycles
,”
Energy
,
88
, pp.
897
906
. 10.1016/j.energy.2015.07.040
23.
Feng
,
Y.-Q.
,
Hung
,
T.-C.
,
Wu
,
S.-L.
,
Lin
,
C.-H.
,
Li
,
B.-X.
,
Huang
,
K.-C.
, and
Qin
,
J.
,
2017
, “
Operation Characteristic of a R123-based Organic Rankine Cycle Depending on Working Fluid Mass Flow Rates and Heat Source Temperatures
,”
Energy Convers. Manage.
,
131
, pp.
55
68
. 10.1016/j.enconman.2016.11.004
24.
Sarkar
,
J.
,
2018
, “
A Novel Pinch Point Design Methodology Based Energy and Economic Analyses of Organic Rankine Cycle
,”
ASME J. Energy Res. Technol.
,
140
(
5
), p.
052004
. 10.1115/1.4038963
25.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
1996
,
Introduction to Heat Transfer
, 3rd ed.,
John Wiley & Sons
,
New York
.
26.
Dipippo
,
R.
,
2004
, “
Second Law Assessment of Binary Plants Generating Power From Low-Temperature Geothermal Fluids
,”
Geothermics
,
33
(
5
), pp.
565
586
. 10.1016/j.geothermics.2003.10.003
27.
Liu
,
B.
,
Chien
,
K.
, and
C.
,
Wang
,
2004
, “
Effect of Working Fluids on Organic Rankine Cycle for Waste Heat Recovery
,”
Energy
,
29
(
8
), pp.
1207
1217
. 10.1016/j.energy.2004.01.004
28.
Mago
,
P. J.
,
Chamra
,
L. M.
, and
Somayaji
,
C.
,
2007
, “
Performance Analysis of Different Working Fluids for Use in Organic Rankine Cycles
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
221
(
3
), pp.
255
264
. 10.1243/09576509JPE372
You do not currently have access to this content.