Non-isothermal flows with convective heat transfer through a curved duct of square cross section are numerically studied by using a spectral method, and covering a wide range of curvature, δ, 0<δ0.5 and the Dean number, Dn, 0Dn6000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr=100, where the outer wall is heated and the inner one cooled. Steady solutions are obtained by the Newton-Raphson iteration method and their linear stability is investigated. It is found that the stability characteristics drastically change due to an increase of curvature from δ = 0.23 to 0.24. When there is no stable steady solution, time evolution calculations as well as their spectral analyses show that the steady flow turns into chaos through periodic or multi-periodic flows if Dn is increased no matter what δ is. The transition to a periodic or chaotic state is retarded with an increase of δ. Nusselt numbers are calculated as an index of horizontal heat transfer and it is found that the convection due to the secondary flow, enhanced by the centrifugal force, increases heat transfer significantly from the heated wall to the fluid. If the flow becomes periodic and then chaotic, as Dn increases, the rate of heat transfer increases remarkably.

1.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
, 1983, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
0066-4189,
35
, pp.
461
512
.
2.
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1986, “
Swirling Flow and Heat Transfer in Coiled and Twisted Pipes
,”
Adv. Transp. Processes
0271-2334,
4
, pp.
49
112
.
3.
Ito
,
H.
, 1987, “
Flow in Curved Pipes
,”
JSME Int. J.
0913-185X,
30
, pp.
543
552
.
4.
Berger
,
S. A.
, 1991, “
Flow and Heat Transfer in Curved Pipes and Tubes
,” AIAA Paper No. 91-0030, pp.
1
19
.
5.
Ghia
,
K. N.
, and
Sokhey
,
J. S.
, 1977, “
Laminar Incompressible Viscous Flow in Curved Ducts of Rectangular Cross-section
,”
ASME J. Fluids Eng.
0098-2202,
99
, pp.
640
648
.
6.
Humphrey
,
J. A. C.
,
Taylor
,
A. M. K.
, and
Whitelaw
,
J. H.
, 1977, “
Laminar Flow in a Curved Duct of Strong Curvature
,”
J. Fluid Mech.
0022-1120,
83
, pp.
509
527
.
7.
Yee
,
G.
,
Chilukuri
,
R.
, and
Humphrey
,
J. A. C.
, 1980, “
Developing Flow and Heat Transfer in Strongly Curved Ducts of Rectangular Cross Section
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
285
291
.
8.
Taylor
,
A. M. K. P.
,
Whitelaw
,
J. H.
, and
Yianneskis
,
M.
, 1982, “
Curved Ducts with Strong Secondary Motion: Velocity Measurements of Developing Laminar and Turbulent Flow
,”
ASME J. Fluids Eng.
0098-2202,
104
, pp.
350
359
.
9.
Hille
,
P.
Vehrenkamp
,
R.
, and
Schulz-Dubois
,
E. O.
, 1985, “
The Development and Structure of Primary and Secondary Flow in a Curved Square Duct
,”
J. Fluid Mech.
0022-1120,
151
, pp.
219
241
.
10.
Sankar
,
S. R.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1988, “
Oscillatory Flows in Coiled Square Ducts
,”
Phys. Fluids
0031-9171,
31
, pp.
1348
1358
.
11.
Sugiyama
,
S.
,
Aoi
,
T.
,
Yamamoto
,
M.
, and
Narisawa
,
N.
, 1989, “Measurements of Developing Laminar Flow in a Curved Rectangular Duct by Means of LDV,”
Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
,
R. K.
Shah
et al.
, eds., pp.
1185
1191
.
12.
Soh
,
W. Y.
, 1988, “
Developing Flow in a Curved Duct of Square Cross-Section and its Fully Developed Dual Solutions
,”
J. Fluid Mech.
0022-1120,
188
, pp.
337
361
.
13.
Winters
,
K. H.
, 1987, “
A Bifurcation Study of Laminar Flow in a Curved Tube of Rectangular Cross-Section
,”
J. Fluid Mech.
0022-1120,
180
, pp.
343
369
.
14.
So
,
R. M. C.
,
Zhang
,
H. S.
, and
Lai
,
Y. G.
, 1991, “
Secondary Cells and Separation in Developing Laminar Curved-Pipe Flows
,”
Theor. Comput. Fluid Dyn.
0935-4964,
3
, pp.
141
162
.
15.
Bara
,
B.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1992, “
An Experimental and Numerical Study of the Dean Problem: Flow Development Towards Two-Dimensional Multiple Solutions
,”
J. Fluid Mech.
0022-1120,
244
, pp.
339
376
.
16.
Shantini
,
W.
, and
Nandakumar
,
K.
, 1986, “
Bifurcation Phenomena of Generalized Newtonian Fluids in Curved Rectangular Ducts
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
22
, pp.
35
60
.
17.
Yao
,
L. S.
, and
Berger
,
S. A.
, 1975, “
Entry Flow in a Curved Pipe
,”
J. Fluid Mech.
0022-1120,
67
, pp.
177
196
.
18.
Mees
,
P. A. J.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1996, “
Instability and Transitions of Flow in a Curved Square Duct: The Development of the Two Pairs of Dean Vortices
,”
J. Fluid Mech.
0022-1120,
314
, pp.
227
246
.
19.
Mees
,
P. A. J.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1996, “
Secondary Instability of Flow in a Curved Duct of Square Cross Section
,”
J. Fluid Mech.
0022-1120,
323
, pp.
387
409
.
20.
Cheng
,
K. C.
,
Lin
,
R. C.
, and
Ou
,
J. W.
, 1975, “
Graetz Problem in Curved Square Channels
,”
ASME J. Heat Transfer
0022-1481,
97
, pp.
244
248
.
21.
Joseph
,
B.
,
Smith
,
E. P.
, and
Adler
,
R. J.
, 1975, “
Numerical Treatment of Laminar Flow in Helically Coiled Tubes of Square Cross Section
,”
AIChE J.
0001-1541,
21
, pp.
965
974
.
22.
Wang
,
L.
, and
Yang
,
T.
, 2004, “
Bifurcation and Stability of Forced Convection in Curved Ducts of Square Cross-Section
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2971
2987
.
23.
Daskopoulos
,
P.
, and
Lenhoff
,
A. M.
, 1989, “
Flow in Curved Ducts: Bifurcation Structure for Stationary Ducts
,”
J. Fluid Mech.
0022-1120,
203
, pp.
125
148
.
24.
Finlay
,
W. H.
, and
Nandakumar
,
K.
, 1990, “
Onset of Two-Dimensional Cellular Flow in Finite Curved Channels of Large Aspect Ratio
,”
Phys. Fluids A
0899-8213,
2
, pp.
1163
1174
.
25.
Thangam
,
S.
, and
Hur
,
N.
, 1990, “
Laminar Secondary Flows in Curved Rectangular Ducts
,”
J. Fluid Mech.
0022-1120,
217
, pp.
421
440
.
26.
Yanase
,
S.
,
Kaga
,
Y.
, and
Daikai
,
R.
, 2002, “
Laminar Flows Through a Curved Rectangular Duct Over a Wide Range of the Aspect Ratio
,”
Fluid Dyn. Res.
0169-5983,
31
, pp.
151
183
.
27.
Wang
,
L.
, and
Yang
,
T.
, 2005, “
Periodic Oscillation in Curved Duct Flows
,”
Physica D
0167-2789,
200
, pp.
296
302
.
28.
Mondal
,
R. N.
,
Kaga
,
Y.
,
Hyakutake
,
T.
, and
Yanase
,
S.
, 2005, “
Unsteady Solutions and the Bifurcation Diagram for the Flow Through a Curved Square Duct
,” Fluid Dyn. Res. (revised again and submitted).
29.
McCormack
,
P. D.
,
Welker
,
H.
, and
Kelleher
,
M.
, 1970, “
Taylor Goertler Vortices and Their Effect on Heat Transfer
,”
ASME J. Heat Transfer
0022-1481,
92
, pp.
101
112
.
30.
Sturgis
,
J. C.
, and
Mudawar
,
I.
, 1999, “
Single-Phase Heat Transfer Enhancement in a Curved Rectangular Channel Subjected to Concave Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
7
), pp.
1255
1272
.
31.
Cheng
,
K. C.
, and
Akiyama
,
M.
, 1970, “
Laminar Forced Convection Heat Transfer in Curved Rectangular Channels
,”
Int. J. Heat Mass Transfer
0017-9310,
13
, pp.
471
490
.
32.
Mori
,
Y.
,
Uchida
,
Y.
, and
Ukon
,
T.
, 1971, “
Forced Convective Heat Transfer in Curved Channel with a Square Cross Section
,”
Int. J. Heat Mass Transfer
0017-9310
14
, pp.
1787
1805
.
33.
Ru
,
Y.
, and
Chang
,
S. F.
, 1994, “
Combined Free and Forced Convection for Developed Flow in Curved Pipes with Finite Curvature Ratio
,”
Int. J. Heat Fluid Flow
0142-727X,
15
(
6
), pp.
470
476
.
34.
Ligrani
,
P. M.
, and
Niver
,
R. D.
, 1988, “
Flow Visualization of Dean Vortices in a Curved Channel with 40 to 1 Aspect Ratio
,”
Phys. Fluids
0031-9171,
31
, pp.
3605
3617
.
35.
Chandratilleke
,
T. T.
, and
Nursubyakto
,
2003, “
Numerical Prediction of Secondary Flow and Convective Heat Transfer in Externally Heated Curved Rectangular Ducts
,”
Int. J. Therm. Sci.
1290-0729,
42
, pp.
187
198
.
36.
Yanase
,
S.
,
Mondal
,
R. N.
,
Kaga
,
Y.
, and
Yamamoto
,
K.
, 2005, “
Transition from Steady to Chaotic States of Isothermal and Non-Isothermal Flows Through a Curved Rectangular Duct
,”
J. Phys. Soc. Jpn.
0031-9015,
74
(
1
), pp.
345
358
.
37.
Yanase
,
S.
,
Mondal
,
R. N.
, and
Kaga
,
Y.
, 2005, “
Numerical Study of Non-Isothermal Flow with Convective Heat Transfer in a Curved Rectangular Duct
,”
Int. J. Therm. Sci.
1290-0729,
44
(
11
), pp.
1047
1060
.
38.
Yanase
,
S.
,
Yamamoto
,
K.
, and
Yoshida
,
T.
, 1994, “
Effects of Curvature on Dual Solutions of Flow Through a Curved Circular Tube
,”
Fluid Dyn. Res.
0169-5983,
13
, pp.
217
228
.
39.
Ruelle
,
D.
, and
Takens
,
F.
, 1971, “
On the Nature of Turbulence
,”
Commun. Math. Phys.
0010-3616,
20
, pp.
167
192
.
40.
Mees
,
P. A. J.
,
Nandakumar
,
K.
, and
Masliyah
,
J. H.
, 1996, “
Steady Spatial Oscillations in a Curved Duct of Square Cross-Section
,”
Phys. Fluids
1070-6631,
8
(
12
), pp.
3264
3270
.
41.
Yamamoto
,
K.
,
Yanase
,
S.
, and
Jiang
,
R.
, 1998, “
Stability of the Flow in a Helical Tube
”,
Fluid Dyn. Res.
0169-5983,
22
, pp.
153
170
.
42.
Yamamoto
,
K.
,
Akita
,
T.
,
Ikeuchi
,
H.
, and
Kita
,
Y.
, 1995, “
Experimental Study of the Flow in a Helical Circular Tube
,”
Fluid Dyn. Res.
0169-5983,
16
, pp.
237
249
.
You do not currently have access to this content.