We performed numerical simulation to investigate the effects of wall slip on flow behaviors of Newtonian and non-Newtonian fluids in macro and micro contraction channels. The results show that the wall slip introduces different vortex growth for the flow in micro channel as compared to that in macro channel, which are qualitatively in agreement with experimental results. The effects of slip on bulk flow behaviors depend on rheological property of the fluid. For Newtonian fluid, the wall slip always reduces the vortex length, while for non-Newtonian fluid, the strength of the slip determines whether the vortex length is reduced or increased. Analyses on the velocity and stress fields confirm the channel size dependent phenomena, such as the reduction of wall shear stress with the decrease in channel size. With the increase in average shear rate, the Newtonian fluid shows the reduction of wall shear stress that increases in the same trend with slip velocity-wall shear stress function, while for non-Newtonian fluid, the effect of the slip is suppressed by shear thinning effect and, therefore, the reduction of wall shear stress is less sensitive to the change in average shear rate and slip velocity-wall shear stress function.

1.
Chen
,
S. C.
,
Tsai
,
R. I.
,
Chien
,
R. D.
, and
Lin
,
T. K.
, 2005, “
Preliminary Study of Polymer Melt Rheological Behavior Flowing Through Micro-Channels
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
501
510
.
2.
Vargas
,
L.
, and
Manero
,
O.
, 1989, “
On the Slip Phenomenon of Polymeric Solutions Through Capillaries
,”
Polym. Eng. Sci.
0032-3888,
29
, pp.
1232
1236
.
3.
Clasen
,
C.
, and
McKinley
,
G. H.
, 2004, “
Gap-Dependent Microrheometry of Complex Liquids
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
124
, pp.
1
10
.
4.
Yasuda
,
K.
,
Sugiura
,
Y.
, and
Mori
,
N.
, 2004, “
Entry Flow of Polymer Solution Through a Microfluidic Device
,”
Proc. the XIVth Int. Congress on Rheology
,
CD-ROM,
NA5
.
5.
Yasuda
,
K.
,
Sugiura
,
Y.
, and
Mori
,
N.
, 2005, “
Apparent Slip Flow of Polymer Solutions in a Microchannel With a PDMS Surface
,”
Advances in Rheology and its Application
,
Science Press
, Monmouth Junction, NJ, pp.
690
693
.
6.
Vinogradova
,
O. I.
, 1999, “
Slippage of Water Over Hydrophobic Surfaces
,”
Int. J. Min. Process.
0301-7516,
56
, pp.
31
60
.
7.
Craig
,
V. S. J.
,
Neto
,
C.
, and
Williams
,
D. R. M.
, 2001, “
Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid
,”
Phys. Rev. Lett.
0031-9007,
87
, p.
054504
.
8.
Tretheway
,
D. C.
, and
Meinhart
,
C. D.
, 1999, “
Apparent Fluid Slip at Hydrophobic Microchannel Walls
,”
Phys. Fluids
1070-6631,
14
, pp.
L9
L12
.
9.
Muller-Mohnssen
,
H.
,
Lobl
,
H. P.
, and
Schauerte
,
W.
, 1987, “
Direct Determination of Apparent Slip for a Ducted Flow of Polyacrylamide Solutions
,”
J. Rheol.
0148-6055,
31
, pp.
690
693
.
10.
Barnes
,
H. A.
, 1995, “
A Review of the Slip (Wall Depletion) of Polymer Solutions, Emulsions and Particle Suspensions in Vicometers: Its Cause, Character, and Cure
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
56
, pp.
221
251
.
11.
Sunarso
,
A.
,
Yamamoto
,
T.
, and
Mori
,
N.
, 2005, “
Numerical Analysis of Polymeric Flow in Contraction Channels With Slip Boundary Condition
,”
Proc. 83rd JSME Conf. on Fluid Eng.
,
CD-ROM, OS1-107.
12.
Sunarso
,
A.
,
Yamamoto
,
T.
, and
Mori
,
N.
, 2005, “
Numerical Simulation of Polymeric Flow in Contraction Channels: Wall Slip and Channel Size Dependent Effects
,”
Flow Dynamics
, AIP Conf. Proc. No.
832
, AIP, Melville, pp.
341
344
.
13.
Bird
,
R. B.
,
Dotson
,
P. J.
, and
Johnson
,
N. L.
, 1980, “
Polymer Solution Rheology Based on a Finitely Extensible Bead-Spring Chain Model
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
7
, pp.
213
235
.
14.
Wapperom
,
P.
, and
Keunings
,
R.
, 2000, “
The Backward-Tracking Lagrangian Particle Method for Transient Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
91
, pp.
273
295
.
15.
Prunode
,
B.
, and
Crochet
,
M. J.
, 1996, “
Flows of Polymer Solutions Through Contractions Part 1: Flows of Polyacrylamide Solutions Through Planar Contractions
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
65
, pp.
269
289
.
16.
Brochard
,
F.
, and
de Gennes
,
P. G.
, 1992, “
Shear-Dependent Slippage at a Polymer/Solid Interface
,”
Langmuir
0743-7463,
8
, pp.
3033
3037
.
17.
Hill
,
D. A.
, 1998, “
Wall Slip in Polymer Melts: A Pseudo-Chemical Model
,”
J. Rheol.
0148-6055,
42
, pp.
581
601
.
18.
Joshi
,
Y. M.
,
Lele
,
A. K.
, and
Mashelkar
,
R. A.
, 2000, “
Slipping Fluids: A Unified Transient Network Model
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
89
, pp.
303
335
.
19.
Yang
,
J. M.
,
Ho
,
C. M.
,
Yang
,
X.
, and
Tai
,
Y. C.
, 2001, “
Micromachined Particle Filter With Low Power Dissipation
,”
J. Fluids Eng.
0098-2202,
123
, pp.
899
908
.
20.
Guenette
,
R.
, and
Fortin
,
M.
, 1995, “
A New Mixed Finite Element Method for Computing Viscoelastic Flows
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
60
, pp.
27
52
.
You do not currently have access to this content.