In this paper the flow field of a rectangular synthetic jet driven by a piezoelectric membrane issuing into a quiescent environment is studied. The similarities exhibited by synthetic and continuous turbulent jets lead to the hypothesis that a rectangular synthetic jet within a limited region downstream of the orifice be modeled using similarity analysis just as a continuous planar jet. Accordingly, the jet is modeled using the classic two-dimensional solution to a continuous jet, where the virtual viscosity coefficient of the continuous turbulent jet is replaced with that measured for a synthetic jet. The virtual viscosity of the synthetic jet at a particular axial location is related to the spreading rate and velocity decay rate of the jet. Hot-wire anemometry is used to characterize the flow downstream of the orifice. The flow field of rectangular synthetic jets is thought to consist of four regions as distinguished by the centerline velocity decay. The regions are the developing, the quasi-two-dimensional, the transitional, and the axisymmetric regions. It is in the quasi-two-dimensional region that the planar model applies, and where indeed the jet exhibits self-similar behavior as distinguished by the collapse of the lateral time average velocity profiles when scaled. Furthermore, within this region the spanwise velocity profiles display a saddleback profile that is attributed to the secondary flow generated at the smaller edges of the rectangular orifice. The scaled spreading and decay rates are seen to increase with stroke ratio and be independent of Reynolds number. However, the geometry of the actuator is seen to additionally affect the external characteristics of the jet. The eddy viscosities of the synthetic jets under consideration are shown to be larger than equivalent continuous turbulent jets. This enhanced eddy viscosity is attributed to the additional mixing brought about by the introduction of the periodic vortical structures in synthetic jets and their ensuing break down and transition to turbulence. Further, a semi-empirical modeling approach is proposed, the final objective of which is to obtain a functional relationship between the parameters that describe the external flow field of the synthetic jet and the input operational parameters to the system.

1.
Glezer
,
A.
, and
Amitay
,
M.
, 2002, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
0066-4189,
34
, pp.
503
529
.
2.
Utturkar
,
Y.
,
Holman
,
R.
,
Mittal
,
R.
,
Carroll
,
R.
,
Sheplak
,
B.
, and
Cattafesta
,
L.
, 2003, “
A Jet Formation Criterion for Synthetic Jet Actuators
,”
41st Aerospace Sciences Meeting and Exhibit
, Reno, NV, AIAA Paper No. 2003-0636.
3.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B.
, and
Cattafesta
,
L.
, 2005, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
0001-1452,
43
(
10
), pp.
2110
2116
.
4.
Amitay
,
M.
,
Smith
,
B.
, and
Glezer
,
A.
, 1998, “
Aerodynamic Flow Control Using Synthetic Jet Technology
,”
36th Aerospace Sciences Meeting and Exhibit
, Paper No. 98-0208.
5.
Seifert
,
A.
,
Eliahu
,
S.
,
Greenblatt
,
D.
, and
Wygnanski
,
I.
, 1998, “
Use of Piezoelectric Actuators for Airfoil Separation Control
,”
AIAA J.
0001-1452,
36
(
8
), pp.
1535
1537
.
6.
Rathnasingham
,
R.
, and
Breuer
,
K.
, 2003, “
Active Control of Turbulent Boundary Layers
,”
J. Fluid Mech.
0022-1120,
495
, pp.
209
233
.
7.
Mahalingam
,
R.
, and
Glezer
,
A.
, 2005, “
Design and Thermal Characteristics of a Synthetic Jet Ejector Heat Sink
,”
ASME J. Electron. Packag.
1043-7398,
127
(
2
), pp.
172
177
.
8.
Pavlova
,
A.
, and
Amitay
,
M.
, 2006, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer
0022-1481,
128
(
9
), pp.
897
907
.
9.
Davis
,
S. A.
, and
Glezer
,
A.
, 1999, “
Mixing Control of Fuel Jets Using Synthetic Jet Technology
,” AIAA Paper No. 99-0447.
10.
Parviz
,
B.
,
Najafi
,
K.
,
Muller
,
M.
,
Bernal
,
L.
, and
Washabaugh
,
P.
, 2005, “
Electrostatically Driven Synthetic Microjet Arrays as a Propulsion Method for Micro Flight—Part I: Principles of Operation, Modelling, and Simulation
,”
Microsyst. Technol.
0946-7076,
11
(
11
), pp.
1214
1222
.
11.
Finley
,
T.
, and
Mohseni
,
K.
, 2004, “
Micro Pulsatile Jets for Thrust Optimization
,”
2004 ASME International Mechanical Engineering Congress and RD&D Expo
, Anaheim, CA, Paper No. IMECE 2004-62042.
12.
Vargas
,
Y.
,
Finley
,
T.
,
Mohseni
,
K.
, and
Hertzberg
,
J.
, 2006, “
Flow Characterization of a Synthetic Jet
,”
44th AIAA Aerospace Sciences Meeting and Exhibit
, Reno, NV, AIAA Paper No. 2006-1422,.
13.
Krishnan
,
G.
, and
Mohseni
,
K.
, 2007, “
On the Modeling of a Synthetic jet as a Spherical Jet
,”
Fifth Joint ASME/JSME Fluids Engineering Conference
, San Diego, CA, Paper No. FEDSM2007 2007-37306.
14.
Mohseni
,
K.
, 2006, “
Pulsatile Vortex Generators for Low-Speed Maneuvering of Small Underwater Vehicles
,”
Ocean Eng.
0029-8018,
33
(
16
), pp.
2209
2223
.
15.
Krieg
,
M.
, and
Mohseni
,
K.
, 2008, “
Thrust Characterization of Pulsatile Vortex Ring Generators for Locomotion of Underwater Robots
,”
IEEE J. Ocean. Eng.
0364-9059,
33
(
2
), pp.
123
132
.
16.
Mallinson
,
S.
,
Hong
,
G.
, and
Reizes
,
J.
, 1999, “
Some Characteristics of Synthetic Jets
,”
Proceedings of the 30th AIAA Fluid Dynamics Conference
, Norfolk, VA, AIAA Paper No. 1999-3651.
17.
Cater
,
J.
, and
Soria
,
J.
, 2002, “
The Evolution of Round Zero-Net-Mass-Flux Jets
,”
J. Fluid Mech.
0022-1120,
472
, pp.
167
200
.
18.
Shuster
,
J.
and
Smith
,
D.
, 2007, “
Experimental Study of the Formation and Scaling of a Round Synthetic Jet
,”
Phys. Fluids
1070-6631,
19
(
4
), p.
045109
.
19.
Smith
,
B.
, and
Glezer
,
A.
, 1998, “
The Formation and Evolution of Synthetic Jets
,”
Phys. Fluids
1070-6631,
10
(
9
), pp.
2281
2297
.
20.
Smith
,
B.
, and
Swift
,
G.
, 2003, “
A Comparison Between Synthetic Jets and Continuous Jets
,”
Exp. Fluids
0723-4864,
34
(
4
), pp.
467
72
.
21.
Fugal
,
S. R.
,
Smith
,
B. L.
, and
Spall
,
R. E.
, 2005, “
Displacement Amplitude Scaling of a Two-Dimensional Synthetic Jet
,”
Phys. Fluids
1070-6631,
17
(
4
), p.
045103
.
22.
Gutmark
,
E.
, and
Grinstein
,
F.
, 1999, “
Flow Control With Noncircular Jets
,”
Annu. Rev. Fluid Mech.
0066-4189,
31
, pp.
239
272
.
23.
Grinstein
,
F.
, 2001, “
Vortex Dynamics and Entrainment in Rectangular Free Jets
,”
J. Fluid Mech.
0022-1120,
437
, pp.
69
101
.
24.
Rizetta
,
D. P.
,
Visbal
,
M. R.
, and
Stanek
,
M. J.
, 1998, “
Numerical Investigation of Synthetic Jet Flowfields
,” AIAA Paper No. 98-2910.
25.
Menon
,
S.
, and
Soo
,
J.-H.
, 2004, “
Simulation of Vortex Dynamics in Three-Dimensional Synthetic and Free Jets Using the Large-Eddy Lattice Boltzmann Method
,”
J. Turbul.
1468-5248,
5
, Art. No. 32.
26.
Zhong
,
S.
,
Garcillan
,
L.
,
Pokusevski
,
Z.
, and
Wood
,
N.
, 2004, “
A PIV Study of Synthetic Jets With Different Orifice Shape and Orientation
,” AIAA Paper No. 2004-2213.
27.
Amitay
,
M.
and
Cannelle
,
F.
, 2006, “
Evolution of Finite Span Synthetic Jets
,”
Phys. Fluids
1070-6631,
18
(
5
), p.
054101
.
28.
Ravi
,
B.
, 2006, “
Numerical Study of Large Aspect-Ratio Synthetic Jets
,” AIAA Paper No. 2006-315.
29.
Mittal
,
R.
,
Rampunggoon
,
P.
, and
Udaykumar
,
H. S.
, 2001, “
Interaction of a Synthetic Jet With a Flat Plate Boundary Layer
,” AIAA Paper No. 2001-2773.
30.
Kotapati
,
R. B.
,
Mittal
,
R.
, and
Cattafesta
,
L. N.
, III
, 2007, “
Numerical Study of a Transitional Synthetic Jet in Quiescent External Flow
,”
J. Fluid Mech.
0022-1120,
581
, pp.
287
321
.
31.
Schlichting
,
H.
, 1933, “
Laminare strahlausbreitung
,”
J. Appl. Math. Mech.
0021-8928,
13
, pp.
260
263
.
32.
Schlichting
,
H.
, 1979,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
33.
Gallas
,
Q.
,
Holman
,
R.
,
Nishida
,
T.
,
Carroll
,
B.
,
Sheplak
,
M.
, and
Cattafesta
,
L.
, 2003, “
Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators
,”
AIAA J.
0001-1452,
41
(
2
), pp.
240
247
.
34.
Glezer
,
A.
, 1988, “
The Formation of Vortex Rings
,”
Phys. Fluids
1070-6631,
31
(
12
), pp.
3532
3542
.
35.
Timoshenko
,
S.
, 1999,
Theory of Plates and Shells
,
McGraw-Hill
,
New York
.
36.
Smith
,
B.
, and
Swift
,
G.
, 2001, “
Synthetic Jets at Larger Reynolds Number and Comparison to Continuous Jets
,”
31st AIAA Fluid Dynamics Conference and Exhibit
, Anaheim, CA, AIAA Paper No. 2001-3030.
37.
Johnstone
,
A.
,
Uddin
,
M.
, and
Pollard
,
A.
, 2005, “
Calibration of Hot-Wire Probes Using Non-Uniform Mean Velocity Profiles
,”
Exp. Fluids
0723-4864,
39
(
3
), pp.
527
534
.
38.
Blevins
,
R. D.
, 1995,
Formulas for Natural Frequency and Mode Shape
,
Krieger
,
Malabar, FL
.
39.
Everest
,
F.
, 2000,
The Master Handbook of Acoustics
,
McGraw-Hill
,
New York
.
40.
Krothapalli
,
A.
,
Baganoff
,
D.
, and
Karamcheti
,
K.
, 1981, “
On the Mixing of a Rectangular Jet
,”
J. Fluid Mech.
0022-1120,
107
, pp.
201
220
.
41.
Tavoularis
,
S.
, 2005,
Measurement in Fluid Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
42.
Marsters
,
G. F.
, 1981, “
Spanwise Velocity Distributions in Jets From Rectangular Slots
,”
AIAA J.
0001-1452,
19
(
2
), pp.
148
152
.
43.
Van Der Hegge Zijnen
,
B.
, 1958, “
Measurements of Velocity Distribution in Plane Turbulent Jet of Air
,”
Appl. Sci. Res., Sect. A
0365-7132,
7
(
4
), pp.
256
276
.
44.
Quinn
,
W.
,
Pollard
,
A.
, and
Marsters
,
G.
, 1983, “
On “Saddle-Backed” Velocity Distributions in Three-Dimensional Turbulent Free Jets
,” AIAA Paper No. 83-1677.
45.
Pope
,
S.
, 2000,
Turbulent Flows
,
Cambridge University Press
,
New York
.
46.
Rumsey
,
C.
,
Gatski
,
T.
,
Sellers
,
W.
,
Vatsa
,
V.
, and
Viken
,
S.
, 2006, “
Summary of the 2004 Computational Fluid Dynamics Validation Workshop on Synthetic Jets
,”
AIAA J.
0001-1452,
44
(
2
), pp.
194
207
.
You do not currently have access to this content.