ac electrokinetic manipulations of particles and fluids are important techniques in the development of lab-on-a-chip technologies. Most of these systems involve planar micro-electrode geometries, generating high strength electric fields. When these fields are applied to a dielectric medium, Joule heating occurs. Understanding electrothermal heating and monitoring the temperature in these environments are critical for temperature-sensitive investigations including biological applications. Additionally, significant changes in fluid temperature when subjected to an electric field will induce electrohydrodynamic flows, potentially disrupting the intended microfluidic profile. This work investigates heat generated from the interaction of ac electric fields and water at various electrical conductivities (from 0.92 mS/m to 390 mS/m). The electrode geometry is an indium tin oxide (ITO) electrode strip 20μm wide and a grounded, planar ITO substrate separated by a 50μm spacer with microfluidic features. Laser-induced fluorescence is used to measure the experimental changes in temperature. A normalization procedure that requires a single temperature-sensitive dye, Rhodamine B (RhB), is used to reduce uncertainty. The experimental electrothermal results are compared with theory and computer simulations.

1.
Pohl
,
H. A.
, 1978,
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
,
Cambridge University Press
,
Cambridge
.
2.
Müller
,
T.
,
Gerardino
,
A.
,
Schnelle
,
T.
,
Shirley
,
S. G.
,
Bordoni
,
F.
,
De Gasperis
,
G.
,
Leoni
,
R.
, and
Fuhr
,
G.
, 1996, “
Trapping of Micrometre and Sub-Micrometre Particles by High-Frequency Electric Fields and Hydrodynamic Forces
,”
J. Phys. D: Appl. Phys.
0022-3727,
29
, pp.
340
349
.
3.
Schnelle
,
T.
,
Muller
,
T.
,
Gradl
,
G.
,
Shirley
,
S. G.
, and
Fuhr
,
G.
, 2000, “
Dielectrophoretic Manipulation of Suspended Submicron Particles
,”
Electrophoresis
0173-0835,
21
, pp.
66
73
.
4.
Holzel
,
R.
,
Gajovic-Eichelmann
,
N.
, and
Bier
,
F. F.
, 2003, “
Oriented and Vectorial Immobilization of Linear M13 dsDNA Between Interdigitated Electrodes—Towards Single Molecule DNA Nanostructures
,”
Biosens. Bioelectron.
0956-5663,
18
, pp.
555
564
.
5.
Morgan
,
H.
,
Hughes
,
M. P.
, and
Green
,
N. G.
, 1999, “
Separation of Submicron Bioparticles by Dielectrophoresis
,”
Biophys. J.
0006-3495,
77
, pp.
516
525
.
6.
Li
,
H. B.
,
Zheng
,
Y. N.
,
Akin
,
D.
, and
Bashir
,
R.
, 2005, “
Characterization and Modeling of a Microfluidic Dielectrophoresis Filter for Biological Species
,”
J. Microelectromech. Syst.
1057-7157,
14
, pp.
103
112
.
7.
Ajdari
,
A.
, 2000, “
Pumping Liquids Using Asymmetric Electrode Arrays
,”
Phys. Rev. E
1063-651X,
61
, pp.
R45
R48
.
8.
Studer
,
V.
,
Pepin
,
A.
,
Chen
,
Y.
, and
Ajdari
,
A.
, 2004, “
An Integrated AC Electrokinetic Pump in a Microfluidic Loop for Fast and Tunable Flow Control
,”
Analyst (Cambridge, U.K.)
0003-2654,
129
, pp.
944
949
.
9.
Suehiro
,
J.
, and
Pethig
,
R.
, 1998, “
The Dielectrophoretic Movement and Positioning of a Biological Cell Using a Three-Dimensional Grid Electrode System
,”
J. Phys. D: Appl. Phys.
0022-3727,
31
, pp.
3298
3305
.
10.
Gray
,
D. S.
,
Tan
,
J. L.
,
Voldman
,
J.
, and
Chen
,
C. S.
, 2004, “
Dielectrophoretic Registration of Living Cells to a Microelectrode Array
,”
Biosens. Bioelectron.
0956-5663,
19
, pp.
771
780
.
11.
Huang
,
Y.
, and
Pethig
,
R.
, 1991, “
Electrode Design for Negative Dielectrophoresis
,”
Meas. Sci. Technol.
0957-0233,
2
, pp.
1142
1146
.
12.
Schnelle
,
T.
,
Muller
,
T.
, and
Fuhr
,
G.
, 2000, “
Trapping in AC Octode Field Cages
,”
J. Electrost.
0304-3886,
50
, pp.
17
29
.
13.
Schnelle
,
T.
,
Hagedorn
,
R.
,
Fuhr
,
G.
,
Fiedler
,
S.
, and
Muller
,
T.
, 1993, “
Three-Dimensional Electric-Field Traps for Manipulation of Cells—Calculation and Experimental-Verification
,”
Biochim. Biophys. Acta
0006-3002,
1157
, pp.
127
140
.
14.
Yang
,
L.
,
Banada
,
P. P.
,
Bhunia
,
A. K.
, and
Bashir
,
R.
, 2008, “
Effects of Dielectrophoresis on Growth, Viability and Immuno-Reactivity of Listeria Monocytogenes
,”
Journal of Biological Engineering
,
2
:6.
15.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Castellanos
,
A.
, and
Morgan
,
H.
, 2000, “
Electric Field Induced Fluid Flow on Microelectrodes: The Effect of Illumination
,”
J. Phys. D: Appl. Phys.
0022-3727,
33
, pp.
L13
L17
.
16.
Green
,
N. G.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Castellanos
,
A.
, and
Morgan
,
H.
, 2001, “
Electrothermally Induced Fluid Flow on Microelectrodes
,”
J. Electrost.
0304-3886,
53
, pp.
71
87
.
17.
Ramos
,
A.
,
Morgan
,
H.
,
Green
,
N. G.
, and
Castellanos
,
A.
, 1998, “
Ac Electrokinetics: A Review of Forces in Microelectrode Structures
,”
J. Phys. D: Appl. Phys.
0022-3727,
31
, pp.
2338
2353
.
18.
Castellanos
,
A.
,
Ramos
,
A.
,
Gonzalez
,
A.
,
Green
,
N. G.
, and
Morgan
,
H.
, 2003, “
Electrohydrodynamics and Dielectrophoresis in Microsystems: Scaling Laws
,”
J. Phys. D: Appl. Phys.
0022-3727,
36
, pp.
2584
2597
.
19.
Jaeger
,
M. S.
,
Mueller
,
T.
, and
Schnelle
,
T.
, 2007, “
Thermometry in Dielectrophoresis Chips for Contact-Free Cell Handling
,”
J. Phys. D: Appl. Phys.
0022-3727,
40
, pp.
95
105
.
20.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1688
1704
.
21.
Chen
,
T. L.
, and
Garimella
,
S. V.
, 2006, “
Measurements and High-Speed Visualizations of Flow Boiling of a Dielectric Fluid in a Silicon Microchannel Heat Sink
,”
Int. J. Multiphase Flow
0301-9322,
32
, pp.
957
971
.
22.
Jang
,
S. P.
,
Kim
,
S. J.
, and
Paik
,
K. W.
, 2003, “
Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-Thermal Sensor Array
,”
Sens. Actuators, A
0924-4247,
105
, pp.
211
224
.
23.
Jiang
,
L. N.
,
Wang
,
Y. L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Fabrication and Characterization of a Microsystem for a Micro-Scale Heat Transfer Study
,”
J. Micromech. Microeng.
0960-1317,
9
, pp.
422
428
.
24.
Sammarco
,
T. S.
, and
Burns
,
M. A.
, 1999, “
Thermocapillary Pumping of Discrete Drops in Microfabricated Analysis Devices
,”
AIChE J.
0001-1541,
45
, pp.
350
366
.
25.
Höhmann
,
C.
, and
Stephan
,
P.
, 2002, “
Microscale Temperature Measurement at an Evaporating Liquid Meniscus
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
157
162
.
26.
Fujisawa
,
N.
,
Funatani
,
S.
, and
Katoh
,
N.
, 2005, “
Scanning Liquid-Crystal Thermometry and Stereo Velocimetry for Simultaneous Three-Dimensional Measurement of Temperature and Velocity Field in a Turbulent Rayleigh-Bérnard Convection
,”
Exp. Fluids
0723-4864,
38
, pp.
291
303
.
27.
Nozaki
,
T.
,
Mochizuki
,
T.
,
Kaji
,
N.
, and
Mori
,
Y. H.
, 1995, “
Application of Liquid-Crystal Thermometry to Drop Temperature-Measurements
,”
Exp. Fluids
0723-4864,
18
, pp.
137
144
.
28.
Richards
,
C. D.
, and
Richards
,
R. F.
, 1998, “
Transient Temperature Measurements in a Convectively Cooled Droplet
,”
Exp. Fluids
0723-4864,
25
, pp.
392
400
.
29.
Hetsroni
,
G.
,
Gurevich
,
M.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Rozenblit
,
R.
, and
Yarin
,
L. P.
, 2003, “
Boiling in Capillary Tubes
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
1551
1563
.
30.
Hetsroni
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
, 2001, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
16
23
.
31.
Chamarthy
,
P.
,
Garimella
,
S. V.
, and
Wereley
,
S. T.
, 2009, “
Non-Intrusive Temperature Measurement Using Microscale Visualization Techniques
,”
Exp. Fluids
0723-4864,
47
, pp.
159
170
.
32.
Hohreiter
,
V.
,
Wereley
,
S. T.
,
Olesen
,
M. G.
, and
Chung
,
J. N.
, 2002, “
Cross-Correlation Analysis for Temperature Measurement
,”
Meas. Sci. Technol.
0957-0233,
13
, pp.
1072
1078
.
33.
Olsen
,
M. G.
, and
Adrian
,
R. J.
, 2000, “
Brownian Motion and Correlation in Particle Image Velocimetry
,”
Opt. Laser Technol.
0030-3992,
32
, pp.
621
627
.
34.
Park
,
J. S.
,
Choi
,
C. K.
, and
Kihm
,
K. D.
, 2005, “
Temperature Measurement for Nanoparticle Suspension by Detecting the Brownian Motion Using Optical Serial Sectioning Microscopy (OSSM)
,”
Meas. Sci. Technol.
0957-0233,
16
, pp.
1418
1429
.
35.
Kim
,
H. J.
, and
Kihm
,
K. D.
, 2002, “
Two-Color (Rh-B & Rh-110) Laser Induced Fluorescence (LIF) Thermometry With Sub-Millimeter Measurement Resolution
,”
ASME J. Heat Transfer
0022-1481,
124
, p.
596
.
36.
Kim
,
H. J.
,
Kihm
,
K. D.
, and
Allen
,
J. S.
, 2003, “
Examination of Ratiometric Laser Induced Fluorescence Thermometry for Microscale Spatial Measurement Resolution
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3967
3974
.
37.
Ross
,
D.
,
Gaitan
,
M.
, and
Locascio
,
L. E.
, 2001, “
Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye
,”
Anal. Chem.
0003-2700,
73
, pp.
4117
4123
.
38.
Coolen
,
M. C. J.
,
Kieft
,
R. N.
,
Rindt
,
C. C. M.
, and
van Steenhoven
,
A. A.
, 1999, “
Application of 2-D LIF Temperature Measurements in Water Using a Nd: YAG laser
,”
Exp. Fluids
0723-4864,
27
, pp.
420
426
.
39.
Sakakibara
,
J.
, and
Adrian
,
R. J.
, 1999, “
Whole Field Measurement of Temperature in Water Using Two-Color Laser Induced Fluorescence
,”
Exp. Fluids
0723-4864,
26
, pp.
7
15
.
40.
Natrajan
,
V. K.
, and
Christensen
,
K. T.
, 2009, “
Two-Color Laser-Induced Fluorescent Thermometry for Microfluidic Systems
,”
Meas. Sci. Technol.
0957-0233,
20
,
015401
.
41.
Pramod
,
C.
,
Wereley
,
S. T.
, and
Garimella
,
S. V.
, 2007, “
Microscale Laser-Induced Fluorescence Method for Non-Intrusive Temperature Measurement
,”
ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA.
42.
Guilbault
,
G. G.
, 1973,
Practical Fluorescence; Theory, Methods, and Techniques
,
Dekker
,
New York
.
43.
Fuhr
,
G.
,
Mueller
,
T.
,
Baukloh
,
V.
, and
Lucas
,
K.
, 1998, “
High-Frequency Electric Field Trapping of Individual Human Spermatozoa
,”
Hum. Reprod.
0268-1161,
13
, pp.
136
141
.
You do not currently have access to this content.