The present study investigates a hierarchy of models for predicting the performance of air-lift pumps. Investigated models range from simplified one-dimensional analytical models to large eddy simulation (LES). Numerical results from LES and from two different analytical models are validated against experimental data available from the air-lift pump research program at Alexandria University. Present LES employs the volume of fluid (VOF) method to model the multiphase flow in the riser pipe. In general, LES is shown to provide fairly accurate predictions for the air-lift pump performance. Moreover, numerical flow patterns in the riser pipe are in good qualitative and quantitative agreement with their corresponding experimental patterns and with flow pattern maps available in the literature. On the other hand, analytical models are shown to provide results that are of surprisingly comparable accuracy to LES in terms of predicting the pump performance curve. However, due to the steady one-dimensional nature of these models, they are incapable of providing information about the different flow patterns developing in the riser pipe and the transient nature of the pumping process.

References

1.
Ahmed
,
W. H.
, and
Badr
,
H. M.
,
2012
, “
Dual-Injection Airlift Pumps: An Enhanced Performance
,”
Particulate Sci. Technol.
,
30
(
6
), pp.
497
516
.10.1080/02726351.2011.604396
2.
Shelton
,
S. V.
, and
Stewart
,
S. W.
,
2002
, “
Bubble Pump Design for Single Pressure Absorption Refrigeration Cycles
,”
ASHRAE Trans.
,
108
(
1
), pp.
867
876
.
3.
Hanafizadeh
,
P.
,
Saidi
,
M. H.
,
Karimi
,
A.
, and
Zamiri
,
A.
,
2010
, “
Effect of Bubble Size and Angle of Tapering Upriser Pipe on the Performance of Airlift Pumps
,”
Particulate Sci. Technol.
,
28
(
4
), pp.
332
347
.10.1080/02726351.2010.496300
4.
Hanafizadeh
,
P.
,
Karimi
,
A.
, and
Saidi
,
M. H.
,
2011
, “
Effect of Step Geometry on the Performance of the Airlift Pump
,”
Int. J. Fluid Mech. Res.
,
38
(
5
), pp.
387
408
.10.1615/InterJFluidMechRes.v38.i5.10
5.
Storch
,
B.
,
1975
, “
Extraction of Sludges by Pneumatic Pumping
,” 2nd Symposium on Jet Pumps and Ejectors and Gas Lift Techniques, Churchill College, Cambridge, UK.
6.
Kassab
,
S. Z.
,
Kandil
,
H. A.
,
Warda
,
H. A.
, and
Ahmed
,
W. H.
,
2009
, “
Air-Lift Pumps Characteristics Under Two-Phase Flow Conditions
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
88
98
.10.1016/j.ijheatfluidflow.2008.09.002
7.
Ayatollahi
,
S.
,
Narimani
,
M.
, and
Moshfeghian
,
M.
,
2004
, “
Intermittent Gas Lift in Aghajari Oil Field, a Mathematical Study
,”
J. Petroleum Sci. Eng.
,
42
(
2
), pp.
245
255
.10.1016/j.petrol.2003.12.015
8.
Stepanoff
,
A. J.
,
1929
, “
Thermodynamic Theory of Air-Lift Pump
,”
ASME Trans.
,
51
, pp.
49
55
.
9.
Nicklin
,
D. J.
,
1963
, “
The Air Lift Pump Theory and Optimization
,”
Trans. Inst. Chem. Eng.
,
41
, pp.
29
39
.
10.
Clark
,
N. N.
, and
Dabolt
,
R. J.
,
1986
, “
A General Design Equation for Airlift Pumps Operating in Slug Flow
,”
AICHE J.
,
32
(
1
), pp.
56
64
.10.1002/aic.690320107
11.
Reinemann
,
D. J.
,
Parlange
,
J. Y.
, and
Timmons
,
M. B.
,
1990
, “
Theory of Small-Diameter Airlift Pumps
,”
Int. J. Multiphase Flow
,
16
(
1
), pp.
113
122
.10.1016/0301-9322(90)90042-H
12.
Stenning
,
A. H.
, and
Martin
,
C. B.
,
1968
, “
An Analytical and Experimental Study of Air Lift Pump Performance
,”
ASME J. Eng. Gas Turbines Power
,
90
(
2
), pp.
106
110
.10.1115/1.3609143
13.
Griffith
,
P.
, and
Wallis
,
G. B.
,
1961
, “
Two-Phase Slug Flow
,”
ASME J. Heat Transfer
,
83
(
3
), pp.
307
318
.10.1115/1.3682268
14.
White
,
F. M.
,
2010
,
Fluid Mechanics
, 7th ed.,
McGraw-Hill
,
New York
.
15.
Dhotre
,
M. T.
,
Niceno
,
B.
, and
Smith
,
B. L.
,
2008
, “
Large Eddy Simulation of a Bubble Column Using Dynamic Sub-grid Scale Model
,”
Chem. Eng. J.
,
136
(
2
), pp.
337
348
.10.1016/j.cej.2007.04.016
16.
Khalil
,
M. F.
, and
Mansour
,
H.
,
1990
, “
Improvement of the Performance of an Air Lift Pump by Means of Surfactants
,” Sixth International Symposium of Heat and Mass Transfer, Miami, FL.
17.
Khalil
,
M. F.
,
Elshorbagy
,
K. A.
,
Kassab
,
S. Z.
, and
Fahmy
,
R. I.
,
1999
, “
Effect of Air Injection Method on the Performance of an Air Lift Pump
,”
Int. J. Heat Fluid Flow
,
20
(
6
), pp.
598
604
.10.1016/S0142-727X(99)00051-X
18.
Kassab
,
S. Z.
,
Kandil
,
H. A.
,
Warda
,
H. A.
, and
Ahmed
,
W. H.
,
2007
, “
Experimental and Analytical Investigations of Airlift Pumps Operating in Three-Phase Flow
,”
Chem. Eng. J.
,
131
(
1
), pp.
273
281
.10.1016/j.cej.2006.12.009
19.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
20.
Smagorinsky
,
J.
,
1963
, “
General Circulation Experiments With the Primitive Equations
,”
Monthly Weather Rev.
,
91
(
3
), pp.
99
164
.10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
21.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
22.
Toutant
,
A.
,
Chandesris
,
M.
,
Jamet
,
D.
, and
Lebaigue
,
O.
,
2009
, “
Jump Conditions for Filtered Quantities at an Under-Resolved Discontinuous Interface. Part 1: Theoretical Development
,”
Int. J. Multiphase Flow
,
35
(
12
), pp.
1100
1118
.10.1016/j.ijmultiphaseflow.2009.07.009
23.
Herrmann
,
M.
,
2013
, “
A Sub-grid Surface Dynamics Model for Sub-Filter Surface Tension Induced Interface Dynamics
,”
Comput. Fluids
,
87
, pp.
92
101
.10.1016/j.compfluid.2013.02.008
24.
Hirsch
,
C.
,
2007
,
Numerical Computation of Internal and External Flows
, 2nd ed.,
Butterworth-Heinemann
,
Oxford, UK
.
25.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1972
, “
A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows
,”
Int. J. Heat Mass Transfer
,
15
(
10
), pp.
1787
1806
.10.1016/0017-9310(72)90054-3
26.
Weller
,
H. G.
,
1993
, “
The Development of a New Flame Area Combustion Model Using Conditional Averaging
,” Imperial College of Science, Technology and Medicine, Tech. Report No. TF 9307.
27.
Roache
,
P. J.
,
1998
, Verification and Validation in Computational Science and Engineering, Hermosa, Albuquerque, NM.
28.
Speziale
,
C. G.
,
1998
, “
Turbulence Modeling for Time-Dependent RANS and VLES: A Review
,”
AIAA J.
,
36
(
2
), pp.
173
184
.10.2514/2.7499
29.
Celik
,
I. B.
,
Cehreli
,
Z. N.
, and
Yavuz
,
I.
,
2005
, “
Index of Resolution Quality for Large Eddy Simulations
,”
ASME J. Fluids Eng.
,
127
(
5
), pp.
949
958
.10.1115/1.1990201
30.
Alcamo
,
R.
,
Micale
,
G.
,
Grisafi
,
F.
,
Brucato
,
A.
, and
Ciofalo
,
M.
,
2005
, “
Large-Eddy Simulation of Turbulent Flow in an Unbaffled Stirred Tank Driven by a Rushton Turbine
,”
Chem. Eng. Sci.
,
60
(
8
), pp.
2303
2316
.10.1016/j.ces.2004.11.017
31.
Taitel
,
Y.
,
Bornea
,
D.
, and
Dukler
,
A. E.
,
1980
, “
Modeling Flow Pattern Transition for Steady Upward Gas–Liquid Flow in Vertical Tubes
,”
AICHE J.
,
26
(
3
), pp.
345
354
.10.1002/aic.690260304
32.
Hanafizadeh
,
P.
,
Ghanbarzadeh
,
S.
, and
Saidi
,
M. H.
,
2011
, “
Visual Technique for Detection of Gas-Liquid Two-Phase Flow Regime in the Airlift Pump
,”
J. Petroleum Sci. Eng.
,
75
(
3
), pp.
327
335
.10.1016/j.petrol.2010.11.028
You do not currently have access to this content.