Ultra-pure hydrogen is very much required for a healthy operation of proton exchange membrane (PEM) fuel cells. The concentration of sulfur in the fuel is an important controlling factor because it leads to pollution via sulfur oxides. H2S sorbent or catalysts coated on the particles that are in the order of 100 μm diameters entrapped into a high void volume carrier structure of sintered microfibers are observed to possess significantly higher heterogeneous reaction rates than packed beds of the small particle size. Fundamental reasons for this difference are investigated in this study to determine if such differences are caused by: (1) bed channeling, (2) microscale interstitial/interparticle velocity distributions, and/or (3) effect of presence of fibers. Since microscale fluid effects are not accounted for in traditional reaction engineering formulations, more rigorous approaches to the fluid flow, gaseous diffusion and surface reaction behaviors for a ZnO-based H2S sorbent have been undertaken using computational fluid dynamics (CFD). Simulation results have been compared with carefully prepared experimental samples of microfibrous materials. The experiments involved 14 wt.% ZnO/SiO2 at an operating temperature of 400 °C and a challenge gas consisting of 0.5 vol. % of H2S in H2 and were used to validate the CFD models (both geometric and species transport). These results show that CFD predictions of chemical conversion of H2S are within 10–15% of the experimentally measured values. The effects of residence time and dilution with void on the chemical conversion have been studied. Different microfibrous materials were modeled to study the effect of fiber diameter and fiber loading on the chemical conversion and pressure drop. It is observed that the dilution with void has a negative effect on the conversion; however, the addition of fibers not only compensated for the negative effect of dilution but also increased the reaction rate. The main goal of this study is to use CFD as a tool to design new materials with enhanced reactivity and reduced pressure drop. Our work suggests that new materials with enhanced chemical reactivity for a given pressure drop should be designed with fewer, larger diameter fibers. Our results show that the logs of reduction of H2S per pressure drop increased by a factor of six for the material with 8 μm diameter fibers with 3% volume fraction relative to a packed bed with same catalyst loading.
Skip Nav Destination
Article navigation
March 2015
Research-Article
Joint Numerical–Experimental Investigation of Enhanced Chemical Reactivity in Microfibrous Materials for Desulfurization
Ravi K. Duggirala,
Ravi K. Duggirala
Mercedes-Benz Research &
Development India Pvt. Ltd.
,Bangalore 560 066
, India
Search for other works by this author on:
Christopher J. Roy,
Christopher J. Roy
1
Professor
Aerospace & Ocean Engineering,
Aerospace & Ocean Engineering,
Virginia Polytechnic Institute and State University
,Blacksburg, VA 24061
1Corresponding author.
Search for other works by this author on:
Priyanka Dhage,
Priyanka Dhage
Intel Corp.
,Hillsboro, OR 97124
Search for other works by this author on:
Bruce J. Tatarchuk
Bruce J. Tatarchuk
Center for Microfibrous Material Manufacturing,
Auburn University
,Auburn, AL 36849
Search for other works by this author on:
Ravi K. Duggirala
Mercedes-Benz Research &
Development India Pvt. Ltd.
,Bangalore 560 066
, India
Christopher J. Roy
Professor
Aerospace & Ocean Engineering,
Aerospace & Ocean Engineering,
Virginia Polytechnic Institute and State University
,Blacksburg, VA 24061
Priyanka Dhage
Intel Corp.
,Hillsboro, OR 97124
Bruce J. Tatarchuk
Center for Microfibrous Material Manufacturing,
Auburn University
,Auburn, AL 36849
1Corresponding author.
Contributed by the Fluids Engineering Division of ASME for publication in the JOURNAL OF FLUIDS ENGINEERING. Manuscript received May 1, 2014; final manuscript received July 31, 2014; published online November 6, 2014. Assoc. Editor: Francine Battaglia.
J. Fluids Eng. Mar 2015, 137(3): 031204 (10 pages)
Published Online: November 6, 2014
Article history
Received:
May 1, 2014
Revision Received:
July 31, 2014
Citation
Duggirala, R. K., Roy, C. J., Dhage, P., and Tatarchuk, B. J. (November 6, 2014). "Joint Numerical–Experimental Investigation of Enhanced Chemical Reactivity in Microfibrous Materials for Desulfurization." ASME. J. Fluids Eng. March 2015; 137(3): 031204. https://doi.org/10.1115/1.4028602
Download citation file:
Get Email Alerts
Cited By
Related Articles
Review on the Properties of Nano-/Microstructures in the Catalyst Layer of PEMFC
J. Fuel Cell Sci. Technol (June,2011)
Pressure Drop Predictions in Microfibrous Materials Using Computational Fluid Dynamics
J. Fluids Eng (July,2008)
Development of Three-Dimensional Streamline Image Velocimetry Using Superimposed Delaunay Triangulation and Geometrical Fitting
J. Fluids Eng (January,2016)
Thermal-Fluid-Dynamic Simulation of a Proton Exchange Membrane Fuel Cell Using a Hierarchical 3D-1D Approach
J. Fuel Cell Sci. Technol (August,2007)
Related Proceedings Papers
Related Chapters
Adding Surface While Minimizing Downtime
Heat Exchanger Engineering Techniques
Performance Testing of Combined Cycle Power Plant
Handbook for Cogeneration and Combined Cycle Power Plants, Second Edition
System Thermal Analysis-Rack (Part II)
Thermal Management of Telecommunication Equipment, Second Edition