Production from a high-pressure gas well at a high production rate encounters the risk of wellbore tensile failure when the pressure gradient of the averaged gas flow becomes large. At the pore-scale, however, when flow in just one pore is choked, gas pressure gradient at the point of choking becomes singular, leading to an unbounded average of the pressure gradient. This study investigates the choking condition for compressible gas flow in a single pore. It is found that wellbore tensile failure can occur at a much lower inlet-to-outlet pressure ratio than predicted from the macroscopic theory of porous medium flow.

References

1.
Jin
,
Y.
,
Chen
,
K. P.
,
Chen
,
M.
,
Grapsas
,
N.
, and
Zhang
,
F. X.
,
2011
, “
Short-Time Pressure Response During the Start-Up of a Constant-Rate Production of a High Pressure Gas Well
,”
Phys. Fluids
,
23
(
4
), p.
043101
.
2.
Jin
,
Y.
,
Chen
,
K. P.
,
Chen
,
M.
, and
Grapsas
,
N.
,
2012
, “
Gas Expansion Induced Acceleration Effect in High Pressure Gas Flows Near a Wellbore
,”
J. Porous Media
,
15
(
4
), pp.
317
328
.
3.
Jin
,
Y.
,
Chen
,
K. P.
, and
Chen
,
M.
,
2012
, “
Highly Compressible Porous Media Flow Near a Wellbore: Effect of Gas Acceleration
,”
ASME J. Fluids Eng.
,
134
(
1
), p.
011301
.
4.
Fjaer
,
E.
,
Holt
,
R. M.
,
Horsrud
,
P.
,
Raaen
,
A. M.
, and
Risnes
,
R.
,
2008
,
Petroleum Related Rock Mechanics
,
Elsevier
,
Amsterdam
, Chap. 4.
5.
Jin
,
Y.
,
Chen
,
K. P.
, and
Chen
,
M.
,
2011
, “
Development of Tensile Stress Near a Wellbore in High Pressure Gas Flows
,”
Int. J. Rock Mech. Min. Sci.
,
48
(
8
), pp.
1313
1319
.
6.
Chen
,
K. P.
,
2011
, “
A New Mechanistic Model for Prediction of Instantaneous Coal Outbursts-Dedicated to the Memory of Prof. Daniel D. Joseph
,”
Int. J. Coal Geol.
,
87
(
2
), pp.
72
79
.
7.
Green
,
L.
, and
Duwez
,
P.
,
1951
, “
Fluid Flow Through Porous Metals
,”
ASME J. Appl. Mech.
,
18
, pp.
39
45
.
8.
Shreeve
,
R. P.
,
1968
, “
Supersonic Flow From a Porous Metal Plate
,”
AIAA J.
,
6
(
4
), pp.
752
753
.
9.
Emanuel
,
G.
, and
Jones
,
J. P.
,
1968
, “
Compressible Flow Through a Porous Plate
,”
Int. J. Heat Mass Transfer
,
11
(
5
), pp.
827
836
.
10.
Beavers
,
G. S.
, and
Sparrow
,
E. M.
,
1971
, “
Compressible Gas Flow Through a Porous Material
,”
Int. J. Heat Mass Transfer
,
14
(
11
), pp.
1855
1859
.
11.
Nield
,
D. A.
,
1994
, “
Modeling High Speed Flow of a Compressible Fluid in a Saturated Porous Medium
,”
Transp. Porous Media
,
14
(
1
), pp.
85
88
.
12.
Kodres
,
C. A.
,
1994
, “
Flow Parameter Approach to Modeling the Flow of Heated Gases Through High Resistance Porous Media
,”
Transp. Porous Media
,
15
(
3
), pp.
229
249
.
13.
de Ville
,
A.
,
1996
, “
On the Properties of Compressible Gas Flow in a Porous Media
,”
Transp. Porous Media
,
22
(
3
), pp.
287
306
.
14.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
Dover Publications
,
New York
, Chap. 5.
15.
Nield
,
D. A.
, and
Bejan
,
A.
,
2013
,
Convection in Porous Media
, 4th ed.,
Springer
,
New York
, Chap. 1.
16.
Zucrow
,
M. J.
, and
Hoffman
,
J. D.
,
1976
,
Gas Dynamics
, Vol.
1
,
Wiley
,
New York
, Chap. 2–6.
17.
Saad
,
M. A.
,
1993
,
Compressible Fluid Flow
, 2nd ed.,
Prentice Hall
,
New York
, Chap. 3.
18.
ANSYS, Inc.
,
2011
, ANSYS FLUENT User's Guide.
19.
ANSYS, Inc.
,
2009
, ANSYS FLUENT Theory Guide.
You do not currently have access to this content.