The bulk modulus of hydraulic fluid is dependent on the quantity of entrained gas in the fluid. In this paper, an effective fluid bulk modulus model that captures dynamic gas absorption during pressure transients is derived from the overall mass transfer theory. Optical measurement of a microgas bubble volume is used to determine the interfacial mass transport. Compared to traditional models, the proposed model is able to capture the 10% gap in the pressure profile between the first and second cycles, when simulating multiple compression cycles of an oil sample with 0.65% entrained gas by volume at 8 MPa.

References

1.
Totten
,
G.
,
Sun
,
Y.
, and
Bishop
,
R.
,
1997
, “
Hydraulic Fluids: Foaming, Air Entrainment, and Air Release—A Review
,”
SAE
Technical Paper No. 972789.
2.
Manhartsgruber
,
B.
,
2013
, “
Experimental Results on Air Release and Absorption in Hydraulic Oil
,”
ASME
Paper No. FEDSM2013-16602.
3.
Kim
,
S.
, and
Murrenhoff
,
H.
,
2012
, “
Measurement of Effective Bulk Modulus for Hydraulic Oil at Low Pressure
,”
ASME J. Fluids Eng.
,
134
(
2
), p.
021201
.
4.
Cho
,
B.-H.
,
Lee
,
H.-W.
, and
Oh
,
J.-S.
,
2002
, “
Estimation Technique of Air Content in Automatic Transmission Fluid by Measuring Effective Bulk Modulus
,”
SAE
Technical Paper No. 2000-05-0107.
5.
Gholizadeh
,
H.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2011
, “
Fluid Bulk Modulus: A Literature Survey
,”
Int. J. Fluid Power
,
12
(
3
), pp.
5
15
.
6.
Gholizadeh
,
H.
,
Burton
,
R.
, and
Schoenau
,
G.
,
2012
, “
Fluid Bulk Modulus: Comparison of Low Pressure Models
,”
Int. J. Fluid Power
,
13
(
1
), pp.
7
16
.
7.
Jinghong
,
Y.
,
Zhaoneng
,
C.
, and
Yuanzhang
,
L.
,
1994
, “
The Variation of Oil Effective Bulk Modulus With Pressure in Hydraulic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
146
150
.
8.
Geankoplis
,
C. J.
,
1972
,
Mass Transfer Phenomena
,
Holt, Rinehart and Winston
,
New York
, Chap. 7.
9.
Brennen
,
C. E.
,
2013
,
Cavitation and Bubble Dynamics
,
Cambridge University Press
,
Cambridge, UK
.
10.
Zhou
,
J.
,
Vacca
,
A.
, and
Manhartsgruber
,
B.
,
2013
, “
A Novel Approach for the Prediction of Dynamic Features of Air Release and Absorption in Hydraulic Oils
,”
ASME J. Fluids Eng.
,
135
(
9
), p.
091305
.
11.
Çengel
,
Y. A.
,
Turner
,
R. H.
,
Cimbala
,
J. M.
, and
Kanoglu
,
M.
,
2005
,
Fundamentals of Thermal-Fluid Sciences
,
McGraw-Hill
,
New York
.
12.
Nelson
,
B.
,
Zhou
,
Y.
, and
Vikramaditya
,
B.
,
1998
, “
Sensor-Based Microassembly of Hybrid MEMS Devices
,”
IEEE Control Syst.
,
18
(
6
), pp.
35
45
.
13.
Stephan
,
K.
,
Krauss
,
R.
, and
Laesecke
,
A.
,
1987
, “
Viscosity and Thermal Conductivity of Nitrogen for a Wide Range of Fluid States
,”
J. Phys. Chem. Ref. Data
,
16
(
4
), pp.
993
1023
.
14.
Wi'llidm
,
R. J.
, Jr.
, and Wedeven, L. D.,
1971
, “
Surface-Tension Measurements in Air of Liquid Lubricants to 200 °C by the Differential-Maximum-Bubble-Pressure Technique
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TN-D-6450
.
15.
Ohnari
,
H.
,
2002
, “
Swirling Fine-Bubble Generator
,” U.S. Patent No.
6,382,601
.
16.
Busch
,
A.
, and
Gottschang
,
J.
,
2015
, “
Oil Tanks—Optimizations for the Future
,” O+P Fluidtechnik, Germany.
You do not currently have access to this content.