Heavy cavitation in torque converters can have a significant effect on hydrodynamic performance, particularly with regards to the torque capacity. The objective of this study is to therefore investigate the effects of pump and turbine blade geometries on cavitation in a torque converter and improve the torque capacity without increasing the torus dimension. A steady-state homogeneous computational fluid dynamics (CFD) model was developed and validated against test data at stall operating condition. A full flow passage with a fixed turbine-stator domain was used to improve the convergence and accuracy of the cavitation model. Cavitation analysis was carried out with various pump and turbine blade geometries. It was found that there is a threshold point for pump blade exit angle in terms of its effect on torque capacity due to heavy cavitation. Further increasing the pump blade exit angle past this point will worsen cavitation condition and decrease torque capacity. The study also shows that a higher turbine blade exit angle, i.e., lower stator incidence angle, could reduce flow separation at the stator suction surface and consequently abate cavitation. A base high-capacity torque converter was upgraded utilizing the cavitation model, and the resulting design exhibited a 20.7% improvement in capacity constant without sacrificing other performance metrics.

References

1.
Brennen
,
C. E.
,
2013
, “
A Review of the Dynamics of Cavitating Pumps
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061301
.
2.
Coutier-Delgosha
,
O.
,
Perrin
,
J.
,
Patella
,
R. F.
, and
Reboud
,
J. L.
, “
Numerical Model to Predict Unsteady Cavitating Flow Behavior in Inducer Blade Cascades
,”
ASME J. Fluids Eng.
,
129
(
2
), pp.
128
135
.
3.
Ganesh
,
H.
,
Makiharju
,
S. A.
, and
Ceccio
,
S. L.
,
2016
, “
Bubbly Shock Propagation as a Mechanism for Sheet-to-Cloud Transition of Partial Cavities
,”
J. Fluid Mech.
,
802
, pp.
37
78
.
4.
Anderson
,
C. L.
,
Zeng
,
L.
,
Sweger
,
P. O.
, and
Narain
,
A.
,
2003
, “
Experimental Investigation of Cavitation Signatures in an Automotive Torque Converter Using a Microwave Telemetry Technique
,”
Int. J. Rotating Mach.
,
9
(
6
), pp.
403
410
.
5.
Mekkes
,
J.
,
Anderson
,
C. L.
, and
Narain
,
A.
,
2004
, “
Static Pressure Measurements and Cavitation Signatures on the Nose of a Torque Converter's Stator Blades
,”
ISROMAC
, Honolulu, Hawaii, Mar. 7–11, Paper No. ISROMAC10-2004-035.
6.
Kowalski
,
D.
,
Anderson
,
C. L.
, and
Blough
,
J. R.
,
2005
, “
Cavitation Detection in Automotive Torque Converters Using Nearfield Acoustical Measurements
,”
SAE Trans.
,
114
(
6
), pp.
2796
2804
.
7.
Robinette
,
D. L.
,
Anderson
,
C. L.
,
Blough
,
J. R.
, and
Johnson
,
M.
,
2007
, “
Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall
,”
SAE
Paper No. 2007-01-2231.
8.
Robinette
,
D. L.
,
Schweitzer
,
J. M.
,
Maddock
,
D. G.
,
Anderson
,
C. L.
, and
Johnson
,
M.
,
2008
, “
Predicting the Onset of Cavitation in Automotive Torque Converters—Part I: Designs With Geometric Similitude
,”
Int. J. Rotating Mach.
,
2008
, p.
312753
.
9.
Robinette
,
D. L.
,
Schweitzer
,
J. M.
,
Maddock
,
D. G.
,
Anderson
,
C. L.
, and
Johnson
,
M.
,
2008
, “
Predicting the Onset of Cavitation in Automotive Torque Converters—Part II: A Generalized Model
,”
Int. J. Rotating Mach.
,
2008
, p.
803940
.
10.
Watanabe
,
S.
,
Otani
,
R.
,
Kunimoto
,
S.
,
Hara
,
Y.
, and
Yamaguchi
,
T.
,
2012
, “
Vibration Characteristics Due to Cavitation in Stator Element of Automotive Torque Converter at Stall Condition
,”
ASME
Paper No. FEDSM2012-72418.
11.
Tsutsumi
,
K.
,
Watanabe
,
S.
,
Tsuda
,
S.
, and
Yamaguchi
,
T.
,
2016
, “
Cavitation Simulation of Automotive Torque Converter Using a Homogeneous Cavitation Model
,”
ISROMAC
, Honolulu, Hawaii, Apr. 10–15.
12.
SAE
,
2012
, “
Standard for Hydrodynamic Drives Terminology
,” SAE International, Warrendale, PA, Standard No. SAE J641 JUN2012.
13.
Liu
,
C.
,
Untaroiu
,
A.
,
Wood
,
H. G.
,
Yan
,
Q. D.
, and
Wei
,
W.
,
2015
, “
Parametric Analysis and Optimization of Inlet Deflection Angle in Torque Converters
,”
ASME J. Fluids Eng.
,
137
(
3
), p.
031101
.
14.
Dong
,
Y.
,
Korivi
,
V.
,
Attibele
,
P.
, and
Yuan
,
Y.
,
2002
, “
Torque Converter CFD Engineering Part II: Performance Improvement Through Core Leakage Flow and Cavitation Control
,”
SAE
Paper No. 2002-01-0884.
15.
Bakir
,
F.
,
Rey
,
R.
,
Gerber
,
A. G.
,
Belamri
,
T.
, and
Hutchinson
,
B.
,
2004
, “
Numerical and Experimental Investigations of the Cavitating Behavior of an Inducer
,”
Int. J. Rotating Mach.
,
10
(
1
), pp.
15
25
.
16.
Antoine
,
C.
,
1888
, “
Vapor Pressure: A New Relationship Between Pressure and Temperature
,”
C. R. Acad. Sci.
,
107
, pp.
681
685
.
17.
Dong
,
Y.
,
Korivi
,
V.
,
Attibele
,
P.
, and
Yuan
,
Y.
,
2002
, “
Torque Converter CFD Engineering Part I: Torque Ratio and K Factor Improvement Through Stator Modifications
,”
SAE
Paper No. 2002-01-0883.
You do not currently have access to this content.