Two hydraulic losses take effect at the junction point of three cylindrical conduits. These two quantities are considered to be functions of the three signed flow rates and two geometrical parameters: the cross-sectional area ratio and the angle between the main conduit and branch tube. A new design of experiment is developed for exploring the parameter space with continuous response surfaces, which cover both dividing and combining flow regimes with a general trigonometric formula. The loss coefficients are determined by using a steady-state, single-phase, three-dimensional (3D) computational fluid dynamics (CFD) model. To help the analytical treatment, a new reference velocity formulation is introduced. The new loss coefficient formula is validated against known empirical correlations for different junction types and flow directions. The obtained continuous solution promotes the applicability of the resistance model in hydraulic network models.

References

1.
Vetrovec
,
J.
,
2008
, “Engine Cooling System with a Heat Load Averaging Capability,”
SAE
Paper No. 2008-01-1168.http://papers.sae.org/2008-01-1168/
2.
Park
,
K. S.
,
Won
,
J. P.
, and
Heo
,
H. S.
,
2002
, “
Thermal Flow Analysis of Vehicle Engine Cooling System
,”
KSME, Int. J.
,
16
(
7
), pp.
975
985
.
3.
Pigford
,
R. L.
,
Ashraf
,
M.
, and
Miron
,
Y. D.
,
1983
, “
Flow Distribution in Piping Manifolds
,”
Ind. Eng. Chem. Fundam.
,
22
(
4
), pp.
463
471
.
4.
Hamm
,
V.
,
Collon-Drouaillet
,
P.
, and
Fabriol
,
R.
,
2008
, “
Two Modelling Approaches to Water-Quality Simulation in a Flooded Iron-Ore Mine (Saizerais, Lorraine, France): A Semi-Distributed Chemical Reactor Model and a Physically Based Distributed Reactive Transport Pipe Network Model
,”
J. Contam. Hydrol.
,
96
(
1–4
), pp.
97
112
.
5.
Liseth
,
P.
,
1976
, “
Wastewater Disposal by Submerged Manifolds
,”
J. Hydr. Div. ASCE
,
102
(
1
), pp.
1
14
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0006426
6.
Antisari
,
L. V.
,
Trivisano
,
C.
,
Gessa
,
C.
,
Gherardi
,
M.
,
Simoni
,
A.
,
Vianello
,
G.
, and
Zamboni
,
N.
,
2010
, “
Quality of Municipal Wastewater Compared to Surface Waters of the River and Artificial Canal Network in Different Areas of the Eastern Po Valley (Italy)
,”
Water Qual., Exposure Health
,
2
(
1
), pp.
1
13
.
7.
Wang
,
J.
,
2008
, “
Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells: U-Type Arrangement
,”
Int. J. Hydrogen Energy
,
33
(
21
), pp.
6339
6350
.
8.
Wang
,
J.
,
2010
, “
Pressure Drop and Flow Distribution in Parallel-Channel Configurations of Fuel Cells: Z-Type Arrangement
,”
Int. J. Hydrogen Energy
,
35
(
11
), pp.
5498
5509
.
9.
Bassiouny
,
M. K.
, and
Martin
,
H.
,
1984
, “
Flow Distribution and Pressure Drop in Plate Heat Exchangers–I U-Type Arrangement
,”
Chem. Eng. Sci.
,
39
(
4
), pp.
693
700
.
10.
Wang
,
J.
,
Gao
,
Z.
,
Gan
,
G.
, and
Wu
,
D.
,
2001
, “
Analytical Solution of Flow Coefficients for a Uniformly Distributed Porous Channel
,”
Chem. Eng. J.
,
84
(
1
), pp.
1
6
.
11.
Sarbu
,
I.
, and
Ostafe
,
G.
,
2016
, “
Optimal Design of Urban Water Supply Pipe Networks
,”
Urban Water J.
,
13
(
5
), pp.
521
535
.
12.
Czetany
,
L.
, and
Lang
,
P.
,
2016
, “
Impact of Inlet Boundary Conditions on the Fluid Distribution of Supply Duct
,”
Appl. Mech. Mater.
,
861
, pp.
384
391
.
13.
Czetany
,
L.
,
Szantho
,
Z.
, and
Lang
,
P.
,
2017
, “
Rectangular Supply Ducts With Varying Cross Section Providing Uniform Air Distribution
,”
Appl. Therm. Eng.
,
115
, pp.
141
151
.
14.
Wang
,
J.
,
2011
, “
Theory of Flow Distribution in Manifolds
,”
Chem. Eng. J.
,
168
(
3
), pp.
1331
1345
.
15.
Wang
,
J.
,
2013
, “
Design Method of Flow Distribution in Nuclear Reactor Systems
,”
Chem. Eng. Res. Des.
,
91
(
4
), pp.
595
602
.
16.
Wang
,
J.
, and
Wang
,
H.
,
2015
, “
Discrete Method for Design of Flow Distribution in Manifolds
,”
Appl. Therm. Eng.
,
89
(
1
), pp.
927
945
.
17.
Sarbu
,
I.
,
2014
, “
Nodal Analysis of Urban Water Distribution Networks
,”
Water Resour. Manage.
,
28
(
10
), pp.
3143
3159
.
18.
Kulkarni
,
A. V.
,
Roy
,
S. S.
, and
Joshi
,
J. B.
,
2007
, “
Pressure and Flow Distribution in Pipe and Ring Spargers: Experimental Measurements and CFD Simulation
,”
Chem. Eng. J.
,
133
(
1–3
), pp.
173
186
.
19.
Gandhi
,
M. S.
,
Ganguli
,
A. A.
,
Joshi
,
J. B.
, and
Vijayan
,
P. K.
,
2012
, “
CFD Simulation for Steam Distribution in Header and Tube Assemblies
,”
Chem. Eng. Res. Des.
,
90
(
4
), pp.
487
506
.
20.
Idelchik
,
I. E.
,
2008
,
Handbook of Hydraulic Resistance
, 3rd ed.,
Jaico Publishing House
,
Mumbai, India
, pp.
413
451
.
21.
Miller
,
D. S.
,
1990
,
Internal Flow Systems
, 2nd ed.,
BHRA (Information Services)
,
Cranfield, UK
, pp.
303
361
.
22.
Rennels
,
D. C.
, and
Hudson
,
H. M.
,
2012
,
Pipe Flow
,
Wiley
,
Hoboken, NJ
, pp.
177
200
.
23.
Liu
,
W.
,
Long
,
Z.
, and
Chen
,
Q.
,
2012
, “
A Procedure for Predicting Pressure Loss Coefficients of Duct Fittings Using Computational Fluid Dynamics (RP-1493)
,”
HVACR Res.
,
18
(
6
), pp.
1168
1181
.http://www.tandfonline.com/doi/abs/10.1080/10789669.2012.713833
24.
Badar
,
A. W.
,
Buchholz
,
R.
,
Lou
,
Y.
, and
Ziegler
,
F.
,
2012
, “
CFD Based Analysis of Flow Distribution in a Coaxial Vacuum Tube Solar Collector With Laminar Flow Conditions
,”
Int. J. Energy Environ. Eng.
,
3
(
1
), p.
24
.
25.
Ramamurthy
,
A. S.
,
Qu
,
J.
,
Vo
,
D.
, and
Zhai
,
C.
,
2006
, “
3-D Simulation of Dividing Flows in 90 Deg Rectangular Closed Conduits
,”
ASME J. Fluids Eng.
,
128
(
5
), pp.
1126
1129
.
26.
Štigler
,
J.
,
Klas
,
R.
,
Kotek
,
M.
, and
Kopecký
,
V.
,
2012
, “
The Fluid Flow in the T-Junction. The Comparison of the Numerical Modeling and PIV Measurement
,”
Procedia Eng.
,
39
(1), pp.
19
27
.
27.
Ito
,
H.
, and
Imai
,
K.
,
1973
, “
Energy Losses at 90° Pipe Junctions
,”
J. Hydraul. Div. ASCE
,
99
(
9
), pp.
1353
1368
.http://cedb.asce.org/CEDBsearch/record.jsp?dockey=0020090
28.
Tomor
,
A.
, and
Kristóf
,
G.
,
2017
, “
Hydraulic Loss of Finite Length Dividing Junctions
,”
ASME J. Fluids Eng.
,
139
(
3
), p.
031104
.
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
30.
Costa
,
N. P.
,
Maia
,
R.
,
Proença
,
M. F.
, and
Pinho
,
F. T.
,
2006
, “
Edge Effects on the Flow Characteristics in a 90 Deg Tee Junction
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1204
1217
.
31.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
, and
Freitas
,
C. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
32.
Mikhailovsky
,
E. M.
, and
Novitsky
,
N. N.
,
2015
, “
A Modified Nodal Pressure Method for Calculating Flow Distribution in Hydraulic Circuits for the Case of Unconventional Closing Relations
,”
St. Petersburg Polytech. Univ. J.: Phys. Math.
,
1
(
2
), pp.
120
128
.
33.
Rockmore
,
D. N.
,
2000
, “
The FFT: An Algorithm the Whole Family Can Use
,”
Comput. Sci. Eng.
,
2
(
1
), pp.
60
64
.
You do not currently have access to this content.