Air traffic volume is expected to triple in the U.S. and Europe by 2025, and as a result, the aerospace industry is facing stricter noise regulations. Apart from the engines, one of the significant contributors of aircraft noise is the deployment of high-lift devices, like leading-edge slats. The unsteady turbulent flow over a leading-edge slat is studied herein. In particular, particle image velocimetry (PIV) measurements were performed on a scale-model wing equipped with a leading-edge slat in the H.J. Irving–J.C.C. Picot Wind Tunnel. Two Reynolds numbers based on wing chord were studied: Re = 6 × 105 and 1.3 × 106. A snapshot proper orthogonal decomposition (POD) analysis indicated that differences in the time-averaged statistics between the two Reynolds numbers were tied to differences in the coherent structures formed in the slat cove shear layer. In particular, the lower Reynolds number flow seemed to be dominated by a large-scale vortex formed in the slat cove that was related to the unsteady flapping and subsequent impingement of the shear layer onto the underside of the slat. A train of smaller, more regular vortices was detected for the larger Reynolds number case, which seemed to cause the shear layer to be less curved and impinge closer to the tail of the slat than for the lower Reynolds number case. The smaller structures are consistent with Rossiter modes being excited within the slat cove. The impingement of the shear layers on and the proximity of the vortices to the slat and the main wing are expected to be strong acoustic dipoles in both cases.

References

1.
Crighton
,
D.
, and
Hubbard
,
H. H.
,
1991
, “
Aeroacoustics of Flight Vehicles, Theory and Practice–Volume 1: Noise Sources
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA-RP-1258-VOL-1
.https://ntrs.nasa.gov/search.jsp?R=19920001380
2.
Guo
,
Y. P.
, and
Joshi
,
M. C.
,
2003
, “
Noise Characteristics of Aircraft High Lift Systems
,”
AIAA J.
,
41
(
7
), pp.
1247
1256
.
3.
Jenkins
,
L. N.
,
Khorrami
,
M. R.
, and
Choudhari
,
M. M.
,
2004
, “
Characterization of Unsteady Flow Structures Near Leading-Edge Slat—Part I: PIV Measurements
,”
AIAA
Paper No. 2004-2801.
4.
Henning
,
A.
,
Kaepernick
,
K.
,
Ehrenfried
,
K.
,
Koop
,
L.
, and
Dillman
,
A.
,
2006
, “
Investigation of Aeroacoustic Noise Sources by Simultaneous PIV and Microphone Measurement
,”
13th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, June 26–29, p. 1185.https://www.researchgate.net/publication/224779404_Investigation_of_Aeroacoustic_Noise_Sources_by_Simultaneous_PIV_and_Microphone_Measurement
5.
Moriarty
,
P.
, and
Heinick
,
J.
,
1999
, “
PIV Measurements Near a Leading-Edge Slat
,”
Third International Workshop on PIV
, Santa Barbara, CA, Sept. 16–18.
6.
Richard
,
P.
,
Wilkins
,
S.
, and
Hall
,
J. W.
,
2014
, “
Flow Around a Leading-Edge Slat—Part I: Turbulent Flow Statistics
,”
ASME
Paper No. PVP 2014-28316.
7.
Wilkins
,
S.
,
Richard
,
P.
, and
Hall
,
J. W.
,
2014
, “
Flow Around a Leading Edge Slat—Part II: Cove Flow Dynamics Via Snapshot Pod
,”
ASME
Paper No. PVP2014-28315.
8.
Wilkins
,
S.
,
Richard
,
P.
, and
Hall
,
J. W.
,
2014
, “
Velocity Field Estimation Using Unsteady Wall Pressure Measurements in a Leading Edge Slat Flow
,”
AIAA
Paper No. 2014-0896.
9.
Wilkins
,
S.
,
Richard
,
P.
, and
Hall
,
J. W.
,
2013
, “
An Experimental Investigation of the Shear-Layer and Acoustic Sources Produced by a Leading Edge Slat
,”
Bull. Am. Phys. Soc.
,
58
, p. M35.005.http://adsabs.harvard.edu/abs/2013APS..DFDM35005W
10.
Choudhari
,
M. M.
,
Lockhard
,
D. P.
,
Macaraeg
,
M. G.
,
Singer
,
B. A.
,
Streett
,
C. L.
,
Neubert
,
G. R.
,
Stoker
,
R. W.
,
Underbrink
,
J. R.
,
Berkman
,
M. E.
,
Khorrami
,
M. R.
, and
Sadowski
,
S. S.
,
2002
, “
Aeroacoustic Experiments in the NASA Langley Low-Turbulence Pressure Tunnel
,” NASA Langley Research Center, Hampton, VA, Technical Report No.
NASA/TM-2002-211432
.https://ntrs.nasa.gov/search.jsp?R=20020043801
11.
Takeda
,
K.
,
Ashcroft
,
G. B.
,
Zhang
,
X.
, and
Nelson
,
P. A.
,
2001
, “
Unsteady Aerodynamics of Slat Cove Flow in a High-Lift Device Configuration
,”
AIAA
Paper No. AIAA-2001-0706
12.
Makiya
,
S.
,
Inasawa
,
A.
, and
Asai
,
M.
,
2010
, “
Vortex Shedding and Noise Radiation From a Trailing-Edge
,”
AIAA J.
,
48
(
2
), pp.
502
509
.
13.
Mendoza
,
J. M.
,
Brooks
,
T. F.
, and
Humphreys
,
W.
, Jr.
,
2002
, “
An Aeroacoustic Study of a Leading Edge Slat Configuration
,”
Int. J. Aeroacoustics
,
1
(
3
), pp.
241
274
.
14.
Pascioni
,
K. A.
, and
Cattafesta
,
L. N.
,
2016
, “
Aeroacoustic Measurements of Leading-Edge Slat Noise
,”
AIAA
Paper No. 2016-2960.
15.
do Amaral
,
F. R.
,
do Carmo Pagani Junior
,
C.
,
Himeno
,
F. H. T.
,
Serrano
,
J. C.
, and
de Mederios
,
M. A. F.
,
2016
, “
Array Shading Applied to Beamforming Technique for Evaluation of Slat Noise From −6 deg to 18 deg Angles of Attack
,”
EPTT, Tenth ABCM Spring School on Transition and Turbulence
, São José dos Campos, Brazil, Sept. 19–23.
16.
Khorrami
,
M. R.
,
Choudhari
,
M.
, and
Jenkins
,
L. N.
,
2004
, “
Characterization of Unsteady Flow Structures Near Leading Edge Slat—Part II: 2D Computations
,”
AIAA
Paper No. 2004-2802.
17.
Choudhari
,
M. M.
, and
Khorrami
,
M. R.
,
2007
, “
Effect of Three-Dimensional Shear-Layer Structures on Slat Cove Unsteadiness
,”
AIAA J.
,
45
(
9
), pp. 2174–2186.
18.
Lockhard
,
D. P.
, and
Choudhari
,
M. M.
,
2009
, “
Noise Radiation From a Leading-Edge Slat
,”
AIAA
Paper No. 2009-3101.
19.
Choudhari
,
M.
,
Lockard
,
D.
,
Khorrami
,
M.
, and
Mineck
,
R.
,
2011
, “
Slat Noise Simulations: Status and Challenges
,” Inter-Noise, Osaka, Japan, Sept. 4–7, Paper No.
20110015496
https://ntrs.nasa.gov/search.jsp?R=20110015496.
20.
Singer
,
B. A.
,
Lockhard
,
D. P.
, and
Brentner
,
K. S.
,
2000
, “
Computational Aeroacoustic Analysis of Slat Trailing-Edge Flow
,”
AIAA J.
,
38
(
9
), pp.
1558
1564
.
21.
Khorrami
,
M. R.
,
Berkman
,
M. E.
, and
Choudhari
,
M. M.
,
2000
, “
Unsteady Flow Computations of a Slat With a Blunt Trailing-Edge
,”
AIAA J.
,
38
(
11
), pp.
2050
2058
.
22.
Khorrami
,
M. R.
,
Singer
,
B. A.
, and
Berkman
,
M. E.
,
2001
, “
Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer
,”
AIAA
Paper No. 2001-2155.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057067.pdf
23.
Terracol
,
M.
,
Manoha
,
E.
, and
Lemoine
,
B.
,
2011
, “
Investigation of the Unsteady Flow and Noise Sources Generation in a Slat Cove: Hybrid Zonal RANS/LES Simulation and Dedicated Experiment
,”
AIAA
Paper No. 2011-3203.
24.
Imamura
,
T.
,
Enomoto
,
S.
,
Yokokawa
,
Y.
, and
Yamamoto
,
K.
,
2007
, “
Simulation of the Broadband Noise From a Slat Using Zonal LES/RANS Hybrid Method
,”
AIAA
Paper No. 2007-226.
25.
Wang
,
X.
,
Hu
,
Z.
, and
Zhang
,
X.
,
2013
, “
Aeroacoustic Effects of High-Lift Wing Slat Track and Cut-Out System
,”
Int. J. Aeroacoustics
,
12
(
3
), pp.
283
307
.
26.
Himeno
,
F. H.
,
do Amaral
,
F. R.
, and
Medeiros
,
M. A.
,
2016
, “
Computational Analysis of Aeroacoustic Effect of a Seal on Slat Cove for Different Angles of Attack
,”
EPTT, Tenth ABCM Spring School on Transition and Turbulence
, São José dos Campos, Brazil, Sept. 19–23.https://www.researchgate.net/publication/311718864_Computational_Analysis_of_Aeroacoustic_Effect_of_a_Seal_on_Slat_Cove_for_Different_Angles_of_Attack
27.
Dobrzynski
,
W.
,
2008
, “
Almost 40 Years of Airframe Noise Research: What Did We Achieve?
,”
14th Aeroacoustics Conference
, Vancouver, BC, Canada, May 5–7.http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=7C2F333414C7C46DEF7896A20AD89280?doi=10.1.1.455.1755&rep=rep1&type=pdf
28.
Lockard
,
D. P.
,
Choudhari
,
M. M.
, and
Buning
,
P. G.
,
2014
, “
Grid Sensitivity for Slat Noise Simulations
,”
AIAA
Paper No. 2014-2627.
29.
Deck
,
S.
, and
Laraufie
,
R.
,
2013
, “
Numerical Investigation of the Flow Dynamics past a Three-Element Aerofoil
,”
J. Fluid Mech.
,
732
(
10
), pp.
401
444
.
30.
Rossiter
,
J. E.
,
1964
, “
Wind Tunnel Experiments on the Flow Over Rectangular Cavities at Subsonic and Transonic Speeds
,” Royal Aircraft Establishment, Farnborough, UK, Technical Report No.
64037
.https://repository.tudelft.nl/view/aereports/uuid:a38f3704-18d9-4ac8-a204-14ae03d84d8c/
31.
Delprat
,
N.
,
2006
, “
Rossiters Formula: A Simple Spectral Model for a Complex Amplitude Modulation Process?
,”
Phys. Fluids
,
18
(
7
), p. 071703.
32.
Richard
,
P. R.
,
2015
, “
Experimental Investigation of the Unsteady Turbulent Flow Around a Leading-Edge Slat Configuration
,” Master’s thesis, University of New Brunswick, Fredericton, NB, Canada.
33.
Everson
,
R.
, and
Sirovich
,
L.
,
1995
, “
The Karhunen–Loève Procedure for Gappy Data
,”
J. Opt. Soc. Am.
,
12
(
8
), pp.
1657
1664
.
34.
Bui-Thanh
,
T.
,
Damodaran
,
M.
, and
Willcox
,
K.
,
2004
, “
Aerodynamic Data Reconstruction and Inverse Design Using Proper Orthogonal Decomposition
,”
AIAA J.
,
42
(
8
), pp.
1505
1516
.
35.
Murray
,
N. E.
, and
Ukeiley
,
L. S.
,
2007
, “
An Application of Gappy Pod for Subsonic Cavity Flow PIV Data
,”
Exp. Fluids
,
42
(
1
), pp.
79
91
.http://adsabs.harvard.edu/abs/2007ExFl...42...79M
36.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flow
,”
Atmospheric Turbulence and Radio Wave Propagation
, Nauka, Moscow, June 15–22, pp.
166
178
.
37.
Murray
,
N. E.
, and
Ukeiley
,
L. S.
,
2007
, “
Modified Quadratic Stochastic Estimation of Resonating Subsonic Cavity Flow
,”
J. Turbul.
,
8
, p. N53.
38.
Siauw
,
W. L.
,
Bonnet
,
J.
,
Tensi
,
J.
, and
Cattafesta
,
L.
, III
,
2009
, “
Flow Physics of Separated Flow Over a NACA 0015 Airfoil and Detection of Flow Separation
,”
AIAA
Paper No. 2009-144.
39.
Štefan
,
D.
,
Rudolf
,
P.
,
Muntean
,
S.
, and
Susan-Resiga
,
R.
,
2017
, “
Proper Orthogonal Decomposition of Self-Induced Instabilities in Decelerated Swirling Flows and Their Mitigation Through Axial Water Injection
,”
ASME J. Fluids Eng.
,
139
(
8
), p.
081101
.
40.
Glauser
,
M. N.
,
Leib
,
S. J.
, and
George
,
W. K.
,
1987
, “
Coherent Structures in the Axisymmetric Turbulent Jet Mixing Layer
,” Turbulent Shear Flows 5,
Springer
,
Berlin
, pp.
134
145
.
41.
Bonnet
,
J.
,
Cole
,
D.
,
Delville
,
J.
,
Glauser
,
M.
, and
Ukeiley
,
L.
,
1994
, “
Stochastic Estimation and Proper Orthogonal Decomposition: Complementary Techniques for Identifying Structure
,”
Exp. Fluids
,
17
(
5
), pp.
307
314
.
42.
Citrinity
,
J. H.
, and
George
,
W. K.
,
2000
, “
Reconstruction of the Global Velocity Field in the Axisymmetric Mixing Layer Utilizing the Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
418
, pp. 137–166.http://www.turbulence-online.com/Publications/Papers/CG00.pdf
43.
Hall
,
J. W.
,
Tinney
,
C. E.
,
Ausseur
,
J. M.
,
Pinier
,
J. T.
,
Hall
,
A. M.
, and
Glauser
,
M. N.
,
2008
, “
Low-Dimensional Tools for Closed-Loop Flow-Control in High Reynolds Number Turbulent Flows
,”
IUTAM Symposium on Flow Control and MEMS
, Kensington, UK, Sept. 19–22, pp.
293
310
.
44.
Namgyal
,
L.
, and
Hall
,
J. W.
,
2013
, “
Coherent Streamwise Vortex Structures in the Near-Field of the Three-Dimensional Wall Jet ASME
,”
ASME J. Fluids Eng.
,
135
(
6
), p.
061204
.
45.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures—Part 1: Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.
46.
Meyer
,
K. E.
,
Pedersen
,
J. M.
, and
Ozcan
,
O.
,
2007
, “
A Turbulent Jet in Crossflow Analysed With Proper Orthogonal Decomposition
,”
J. Fluid Mech.
,
583
, pp.
199
227
.
47.
Hall
,
J. W.
, and
Ewing
,
D.
,
2007
, “
The Asymmetry of the Large-Scale Structures in Turbulent Three-Dimensional Wall Jets Exiting Long Rectangular Channels
,”
ASME J. Fluids Eng.
,
129
(
7
), pp.
929
941
.
48.
Hall
,
J. W.
, and
Ewing
,
D.
,
2010
, “
Spectral Linear Stochastic Estimation of the Turbulent Velocity in a Square Three-Dimensional Wall Jet
,”
ASME J. Fluids Eng.
,
132
(
5
), p.
051203
.
You do not currently have access to this content.