Abstract

This study quantified the correlation of internal geometry (including Coanda effects) and external walls on oscillation frequency for a fluidic oscillator that was tested for a variety of mass flow rates using CO2 gas. The oscillator designs were modified by altering the aspect ratio (AR) with respect to the exit nozzle and changing the cross-sectional area ratio (MR) between the exit throat and power nozzle. The AR and cross-sectional MR were shown to be correlated with frequency. External walls parallel to each other and perpendicular to the oscillator exit throat were added at varying separation distances to observe how they affected the jet oscillation angle and frequency. By increasing the convexity of the exit throat, Coanda effects were about three times more effective in increasing the oscillation angle compared to wall effects. The internal geometry effects were combined by nondimensional analysis to find a function for predicting the frequency of an oscillator in terms of aspect and area ratios. The function showed that the oscillators converged to a single Strouhal number of 0.016.

References

References
1.
Stouffer
,
R. D.
, and
Bower
,
R.
,
1995
, “
Fluidic Flow Meter With Fiber Optic Sensor
,” U.S. Patent 5,827,976.
2.
Hossain
,
M.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2018
, “
Sweeping Jet Impingement Heat Transfer on a Simulated Turbine Vane Leading Edge
,”
Proceedings of the Global Power and Propulsion Society Forum, Z. Arich, ed.
,
Zurich, Switzerland
, Jan. 10–12,
Paper No. GPPS-2018-0148
.https://www.researchgate.net/publication/327753095_Sweeping_jet_impingement_heat_transfer_on_a_simulated_turbine_vane_leading_edge
3.
Hossain
,
M.
,
Prenter
,
R.
,
Lundgreen
,
R.
,
Ameri
,
A.
,
Gregory
,
J.
, and
Bons
,
J.
,
2018
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME J. Turbomach.
,
140
(
3
), p.
031009
.10.1115/1.4038690
4.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2019
, “
Sweeping Jets Issuing From the Face of a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121201
.10.1115/1.4043576
5.
Seele
,
R.
,
Tewes
,
P.
,
Woszidlo
,
R.
,
McVeigh
,
M. A.
,
Lucas
,
N. J.
, and
Wygnanski
,
I. J.
,
2009
, “
Discrete Sweeping Jets as Tools for Improving the Performance of the v-22
,”
J. Aircr.
,
46
(
6
), pp.
2098
2106
.10.2514/1.43663
6.
Al-Asady
,
A.
, and
Razouqi
,
B.
,
2013
, “
Theoretical and Experimental Investigation of Fluidic Oscillators
,”
J. Eng.
,
19
(
3
), pp.
403
413
.
7.
Stouffer
,
R. D.
,
1979
, “
Oscillating Spray Device
,” U.S. Patent 4,151,955.
8.
Gregory
,
J. W.
,
Sullivan
,
J. P.
,
Raman
,
G.
, and
Raghu
,
S.
,
2007
, “
Characterization of the Microfluidic Oscillator
,”
AIAA J.
,
45
(
3
), pp.
568
576
.10.2514/1.26127
9.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structures in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
.10.1103/PhysRevFluids.1.050509
10.
Hirsch
,
D.
, and
Gharib
,
M.
,
2018
, “
Schlieren Visualization and Analysis of Sweeping Jet Actuator Dynamics
,”
AIAA J.
,
56
(
8
), pp.
2947
2960
.10.2514/1.J056776
11.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Numerical Simulation of a Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.10.2514/1.J056715
12.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2020
, “
The Effect of Scale and Working Fluid on Sweeping Jet Frequency and Oscillation Angle
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061206
.10.1115/1.4046167
13.
Cushman-Roisin
,
B.
,
2012
, “
Chapter 3: Dispersion and Mixing
,”
Dartmouth College
,
Hanover, NH
, pp.
76
101
.
14.
Wen
,
X.
,
Li
,
Z.
,
Zhou
,
W.
, and
Liu
,
Y.
,
2018
, “
Interaction of Dual Sweeping Impinging Jets at Different Reynolds Numbers
,”
Phys. Fluids
,
30
(
10
), p.
105105
.10.1063/1.5054161
15.
Koklu
,
M.
,
2016
, “
Effect of a Coanda Extension on the Performance of a Sweeping Jet Actuator
,”
AIAA J.
,
54
(
3
), pp.
1125
1128
.10.2514/1.J054448
16.
Wen
,
X.
, and
Liu
,
Y.
,
2018
, “
Lagrangian Analysis of Sweeping Jets Measured by Time-Resolved Particle Image Velocimetry
,”
Exp. Therm. Fluid Sci.
,
97
(
10
), pp.
192
204
.10.1016/j.expthermflusci.2018.04.014
17.
Thurman
,
D.
,
Poinsatte
,
P.
,
Ameri
,
A.
,
Culley
,
D.
,
Raghu
,
S.
, and
Shyam
,
V.
,
2016
, “
Investigation of Spiral and Sweeping Holes
,”
ASME J. Turbomach.
,
138
(
9
), p.
091007
.10.1115/1.4032839
18.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Effect of Velocity Ratio on the Flow Field of a Spatially Oscillating Jet in Crossflow
,”
AIAA Paper No. 2017-0769
.10.2514/6.2017-0769
19.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.10.1115/1.4004373
You do not currently have access to this content.