Abstract

This study was conducted to quantify in a controlled manner the effect of oscillator scale and working fluid on oscillator performance. The performance parameters of interest include the oscillation frequency and oscillation spread angle. Three scale models were manufactured with model attributes identical except for scale with models at two times and three times a baseline scale. Four working fluids were tested including helium, ethylene, carbon dioxide, and propane to generate a range of densities and viscosities. The frequency and oscillation angle measurements were obtained using high-speed video recordings of visible schlieren imagery. Trends in frequency were observed and quantified for each oscillator scale and working gas as a function of mass flowrate. This paper shows that these values could all be nondimensionalized with the data collapsing to a single Strouhal number between 0.015 and 0.018 depending on surface roughness, independent of the Reynolds number. This result expands on the authors' previously published work and confirms the previous finding that reveals the geometry and fluid properties also scale and collapse.

References

1.
Spyropoulos
,
C. E.
,
1964
, “
A Sonic Oscillator
,”
Proceedings of the Fluid Amplification Symposium, Harry Diamond Laboratories
, Washington, DC, May 26–28, pp.
27
51
.
2.
Stouffer
,
R. D.
, and
Bower
,
R.
,
1998
, “
Fluidic Flow Meter With Fiber Optic Sensor
,” U.S. Patent No. 5,827,976.
3.
Stouffer
,
R. D.
,
1979
, “
Oscillating Spray Device
,” U.S. Patent No. 4,151,955.
4.
Sieber
,
M.
,
Ostermann
,
F.
,
Woszidlo
,
R.
,
Oberleithner
,
K.
, and
Paschereit
,
C. O.
,
2016
, “
Lagrangian Coherent Structures in the Flow Field of a Fluidic Oscillator
,”
Phys. Rev. Fluids
,
1
(
5
), p.
050509
.10.1103/PhysRevFluids.1.050509
5.
Woszidlo
,
R.
,
Ostermann
,
F.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2015
, “
The Time Resolved Natural Flow Field of a Fluidic Oscillator
,”
Exp. Fluids
,
56
(
6
), p.
12
.10.1007/s00348-015-1993-8
6.
Al-Asady
,
A.
, and
Razouqi
,
B.
,
2013
, “
Theoretical and Experimental Investigation of Fluidic Oscillator
,”
Iraq Academic Sci. J.
,
19
(
3
), pp.
403
413
.https://www.iasj.net/iasj?func=article&aId=68477
7.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2019
, “
Sweeping Jets Issuing From the Face of a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121201
.10.1115/1.4043576
8.
Hossain
,
M. A.
,
Agricola
,
L.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
, 2018. “
Sweeping Jet Impingement Heat Transfer on a Turbine Vane Leading Edge
,”
Proceedings of the Global Power and Propulsion Society Forum
, ZÃrich, Switzerland, Jan. 10–12, Paper No. GPPS-2018-0148.
9.
Ostermann
,
F.
,
Woszidlo
,
R.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2017
, “
Effect of Velocity Ratio on the Flow Field of a Spatially Oscillating Jet in Crossflow
,”
AIAA
Paper No. 2017–0769.10.2514/6.2017-0769
10.
Tomac
,
M. N.
, and
Gregory
,
J. W.
,
2019
, “
Phase-Synchronized Fluidic Oscillator Pair
,”
AIAA J.
,
57
(
2
), pp.
670
681
.10.2514/1.J057065
11.
Seele
,
R.
,
Tewes
,
P.
,
Woszidlo
,
R.
,
McVeigh
,
M. A.
,
Lucas
,
N.
, and
Wygnanski
,
I.
,
2009
, “
Discrete Sweeping Jets as Tools for Improving the Performance of the V-22
,”
AIAA J. Aircr.
,
46
(
6
), pp.
2098
2106
.10.2514/1.43663
12.
Kara
,
K.
,
Kim
,
D.
, and
Morris
,
P. J.
,
2018
, “
Flow Separation Control Using Sweeping Jet Actuator
,”
AIAA J.
,
56
(
11
), pp.
4604
4613
.10.2514/1.J056715
13.
Koklu
,
M.
, and
Owens
,
L.
,
2017
, “
Comparison of Sweeping Jet Actuators With Different Flow-Control Techniques for Flow-Separation Control
,”
AIAA J.
,
55
(
3
), pp.
848
860
.10.2514/1.J055286
14.
Jentzsch
,
M.
,
Taubert
,
L.
, and
Wygnanski
,
I.
,
2017
, “
On the Use of Sweeping Jets to Trim and Control a Tailless Aircraft Model
,”
AIAA
Paper No. 2017-3042.10.2514/6.2017-3042
15.
Guyot
,
D.
,
Paschereit
,
C. O.
, and
Raghu
,
S.
,
2009
, “
Active Combustion Control Using a Fluidic Oscillator for Asymmetric Fuel Flow Modulation
,”
Int. J. Flow Control
,
1
(
2
), pp.
155
166
.10.1260/175682509788913335
16.
Lacarelle
,
A.
, and
Paschereit
,
C. O.
,
2012
, “
Increasing the Passive Scalar Mixing Quality of Jets in Crossflow With Fluidics Actuators
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021503
.10.1115/1.4004373
17.
Hossain
,
M. A.
,
Prenter
,
R.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Experimental and Numerical Investigation of Sweeping Jet Film Cooling
,”
ASME
Paper No. GT2017-64479.10.1115/GT2017-64479
18.
Hossain
,
M. A.
,
Prenter
,
R.
,
Agricola
,
L. M.
,
Lundgreen
,
R. K.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2017
, “
Effects of Roughness on the Performance of Fluidic Oscillators
,”
AIAA
Paper No. 2017-0770.10.1115/2017-0770
19.
Hirsch
,
D.
, and
Gharib
,
M.
,
2018
, “
Schlieren Visualization and Analysis of Sweeping Jet Actuator Dynamics
,”
AIAA J.
,
56
(
8
), pp.
2947
2960
.10.2514/1.J056776
20.
Wen
,
X.
, and
Liu
,
Y.
,
2018
, “
Lagrangian Analysis of Sweeping Jets Measurements by Time-Resolved Particle Image Velocimetry
,”
J. Exp. Therm. Fluid Sci.
,
97
(
2
), pp.
192
204
.10.1016/j.expthermflusci.2018.04.014
You do not currently have access to this content.