Abstract

It is known that the geometry of the nozzle has a great effect on the aggressive intensity of a cavitating jet. In previous reports, various nozzle geometries were proposed, and improvements made to the aggressive intensity were reported. However, no detailed description of the reasons why the aggressive intensity is improved by these various geometries was given. In this study, we conducted erosion tests on pure aluminum Japanese Industrial Standards JIS A1050P using 11 different nozzles with different geometries downstream from the throat outlet in order to understand the effects of the nozzle geometry on the aggressive intensity. In addition, in order to investigate the characteristics of the cavitating jet produced by each nozzle, measurements of the erosion areas, images of the cavitating jet using a high-speed video camera, and measurements of the impingement pressure of the cavitating jet were taken, and correlations between the parameters were obtained. It was found that the nozzle with the largest mass loss was a nozzle with water flow holes near to the throat outlet and a long guide pipe (LGP). The mass loss was 2.5 times that of the previously reported optimum geometry nozzle. Very high correlations were obtained between the mass loss, the inner diameter of the annular erosion area, the impingement pressure measured at the same standoff distance and the cavitation cloud lifetime. Based on these results and the images of the cavitating jets taken with the high-speed video camera, a new cavitating jet progression process is proposed.

References

1.
Eisenberg
,
P.
,
1963
, “
Cavitation Damage
,” Hydronautics, Report No.
233
1
.
2.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
,
New York
.
3.
Soyama
,
H.
,
Yamauchi
,
Y.
,
Ikohagi
,
T.
,
Oba
,
R.
,
Sato
,
K.
,
Shindo
,
T.
, and
Oshima
,
R.
,
1996
, “
Marked Peening Effects of Highspeed Submerged-Water-Jets—Residual Stress Change on SUS304
,”
J. Jet Flow Eng. Jpn.
,
13
(
1
), pp.
25
32
.
4.
Hirano
,
K.
,
Enomoto
,
K.
,
Hayashi
,
E.
, and
Kurosawa
,
K.
,
1996
, “
Effect of Water Jet Peening on Corrosion Resistance and Fatigue Strength of Type 304 Stainless Steel
,”
J. Soc. Mater. Sci. Jpn.
,
45
(
7
), pp.
740
745
.10.2472/jsms.45.740
5.
Soyama
,
H.
,
Saito
,
K.
, and
Saka
,
M.
,
2002
, “
Improvement of Fatigue Strength of Aluminum Alloy by Cavitation Shotless Peening
,”
J. Eng. Mater. Technol.
,
124
(
2
), pp.
135
139
.10.1115/1.1447926
6.
Odhiambo
,
D.
, and
Soyama
,
H.
,
2003
, “
Cavitation Shotless Peening for Improvement of Fatigue Strength of Carbonized Steel
,”
Int. J. Fatigue
,
25
(
9–11
), pp.
1217
1222
.10.1016/S0142-1123(03)00121-X
7.
Soyama
,
H.
,
Macodiyo
,
D. O.
, and
Mall
,
S.
,
2004
, “
Compressive Residual Stress Into Titanium Alloy Using Cavitation Shotless Peening Method
,”
Tribol. Lett.
,
17
(
3
), pp.
501
504
.10.1023/B:TRIL.0000044497.45014.f2
8.
Han
,
B.
,
Ju
,
Y. D.
, and
Jia
,
P. W.
,
2007
, “
Influence of Water Cavitation Peening With Aeration on Fatigue Behaviour of SAE1045 Steel
,”
Appl. Surf. Sci.
,
253
(
24
), pp.
9342
9346
.10.1016/j.apsusc.2007.05.076
9.
Lee
,
H.
,
Mall
,
S.
, and
Soyama
,
H.
,
2009
, “
Fretting Fatigue Behavior of Cavitation Shotless Peened Ti–6Al–4V
,”
Tribol. Lett.
,
36
(
2
), pp.
89
94
.10.1007/s11249-009-9463-1
10.
Takakuwa
,
O.
,
Takeo
,
F.
,
Sato
,
M.
, and
Soyama
,
H.
,
2016
, “
Using Cavitation Peening to Enhance the Fatigue Strength of Duralumin Plate Containing a Hole With Rounded Edges
,”
Surf. Coat. Technol.
,
307
, pp.
200
205
.10.1016/j.surfcoat.2016.08.087
11.
Soyama
,
H.
,
2019
, “
Comparison Between the Improvements Made to the Fatigue Strength of Stainless Steel by Cavitation Peening, Water Jet Peening, Shot Peening and Laser Peening
,”
J. Mater. Process. Technol.
,
269
, pp.
65
78
.10.1016/j.jmatprotec.2019.01.030
12.
Soyama
,
H.
,
2017
, “
Key Factors and Applications of Cavitation Peening
,”
Int. J. Peening Sci. Tech.
,
1
, pp.
3
60.
https://www.shotpeener.com/library/pdf/2018010.pdf
13.
Soyama
,
H.
,
2020
, “
Cavitation Peening: A Review
,”
Metals
,
10
(
2
), p.
270
.10.3390/met10020270
14.
Momma
,
T.
, and
Lichtarowicz
,
A.
,
1995
, “
A Study of Pressure and Erosion Produced by Collapsing Cavitation
,”
Wear
,
186–187
(
Part 2
), pp.
425
436
.10.1016/0043-1648(95)07144-X
15.
Kamisaka
,
H.
, and
Soyama
,
H.
,
2018
, “
Effect of Injection Pressure on Mechanical Surface Treatment Using a Submerged Water Jet
,”
J. Jet Flow Eng. Jpn.
,
33
(
2
), pp.
4
10
.
16.
Soyama
,
H.
, and
Takakuwa
,
O.
,
2011
, “
Enhancing the Aggressive Strength of a Cavitating Jet and Its Practical Application
,”
J. Fluid Sci. Technol.
,
6
(
4
), pp.
510
521
.10.1299/jfst.6.510
17.
Hutli
,
E.
,
Nedeljkovic
,
M. S.
,
Bonyar
,
A.
, and
Legrady
,
D.
,
2017
, “
Experimental Study on the Influence of Geometrical Parameters on the Cavitation Erosion Characteristics of High Speed Submerged Jets
,”
Exp. Therm. Fluid Sci.
,
80
, pp.
281
292
.10.1016/j.expthermflusci.2016.08.026
18.
Yanaida
,
K.
,
Nakayama
,
M.
,
Eda
,
K.
, and
Nishida
,
N.
,
1985
, “
Water Jet Cavitation Performance of Submerged Horn Shaped Nozzle
,”
Third U. S. Water Jet Conference
,
Pittsburgh, PA
, May 21, pp.
336
349
.
19.
Surjaatmadja
,
B. J.
, and
Howlett
, and
J. J.
, Jr.
,
1992
, “
Surge Enhanced Cavitating Jet
,” U.S. Patent No. 5,125,582.
20.
Yamauchi
,
Y.
,
Soyama
,
H.
,
Adachi
,
Y.
,
Sato
,
K.
,
Shindo
,
T.
,
Oba
,
R.
,
Oshima
,
R.
, and
Yamabe
,
M.
,
1995
, “
Suitable Region of High-Speed Submerged Water Jets for Cutting and Peening
,”
JSME Int. J., Ser. B
,
38
(
1
), pp.
31
38
.10.1299/jsmeb.38.31
21.
Soyama
,
H.
,
Yamauchi
,
Y.
,
Adachi
,
Y.
,
Sato
,
K.
,
Shindo
,
T.
, and
Oba
,
R.
,
1995
, “
High-Speed Observations of the Cavitation Cloud Around a High-Speed Submerged Water-Jet
,”
JSME Int. J., Ser. B
,
38
(
2
), pp.
245
251
.10.1299/jsmeb.38.245
22.
Soyama
,
H.
,
2011
, “
Enhancing the Aggressive Intensity of a Cavitating Jet by Means of the Nozzle Outlet Geometry
,”
ASME J. Fluids Eng.
,
133
(
10
), p.
101301
.10.1115/1.4004905
23.
Soyama
,
H.
,
2013
, “
Effect of Nozzle Geometry on a Standard Cavitation Erosion Test Using a Cavitating Jet
,”
Wear
,
297
(
1–2
), pp.
895
902
.10.1016/j.wear.2012.11.008
24.
Soyama
,
H.
,
2014
, “
Enhancing the Aggressive Intensity of a Cavitating Jet by Introducing a Cavitator and a Guide Pipe
,”
J. Fluid Sci. Technol.
,
9
(
1
), pp.
1
12
.10.1299/jfst.2014jfst0001
25.
Kamisaka
,
H.
, and
Soyama
,
H.
,
2019
, “
Enhancement of an Aggressive Intensity of a Cavitating Jet by Water Flow Holes Near Nozzle Outlet
,”
Trans. JSME Jpn.
,
85
(
879
), p.
19
00280
.10.1299/transjsme.19-00280
26.
Shimizu
,
S.
,
Tanioka
,
K.
, and
Ikegami
,
N.
,
1997
, “
Erosion Due to Ultra-High-Speed Cavitating Jet
,”
J. Jpn. Hydraul. Pneumatics Soc.
,
28
(
7
), pp.
778
784
(in Japanese).10.5739/jfps1970.28.778
27.
Soyama
,
H.
,
1998
, “
Material Testing and Surface Modification by Using Cavitating Jet
,”
J. Soc. Mater. Sci. Jpn.
,
47
(
4
), pp.
381
387
.10.2472/jsms.47.381
28.
Soyama
,
H.
, and
Hoshino
,
J.
,
2016
, “
Enhancing the Aggressive Intensity of Hydrodynamic Cavitation Through a Venturi Tube by Increasing the Pressure in the Region Where the Bubbles Collapse
,”
AIP Adv.
,
6
(
4
), p.
045113
.10.1063/1.4947572
29.
Hattori
,
S.
,
Goto
,
Y.
, and
Fukuyama
,
T.
,
2006
, “
Influence of Temperature on Erosion by a Cavitating Liquid Jet
,”
Wear
,
260
(
11–12
), pp.
1217
1223
.10.1016/j.wear.2005.08.001
30.
Hutli
,
E.
,
Nedeljkovic
,
M.
, and
Radovic
,
N.
,
2008
, “
Mechanics of Submerged Jet Cavitating Action: Material Properties, Exposure Time and Temperature Effects on Erosion
,”
Arch. Appl. Mech.
,
78
(
5
), pp.
329
341
.10.1007/s00419-007-0163-8
31.
Dular
,
M.
,
2016
, “
Hydrodynamic Cavitation Damage in Water at Elevated Temperatures
,”
Wear
,
346–347
(
15
), pp.
78
86
.10.1016/j.wear.2015.11.007
32.
Kumagaya
,
N.
, and
Soyama
,
H.
,
2016
, “
Effect of Nozzle Throat Length on Aggressive Intensity of a Cavitating Jet
,”
J. Jet Flow Eng. Jpn.
,
32
(
2
), pp.
25
32
.
33.
Liu
,
H.
,
Kang
,
C.
, and
Soyama
,
H.
,
2020
, “
Experimental Study of the Influence of Test Chamber Dimensions on Aggressive Intensity of the Cavitating Jet
,”
J. Test. Eval.
,
48
(
5
), p.
20180573
.10.1520/JTE20180573
34.
ASTM
,
2017
, “
Standard Test Method for Erosion of Solid Materials by Cavitating Liquid Jet
,”
ASTM
,
West Conshohocken, PA
, Standard No. ASTM G134-17, pp.
1
17
.
35.
Soyama
,
H.
,
Uranishi
,
K.
,
Ito
,
Y.
,
Kato
,
H.
,
Ichioka
,
T.
, and
Oba
,
R.
,
1990
, “
Hard-Erosion-Progress in a Typical Centrifugal Pump (1st Report, Marked Effects of Upstream Cavitators)
,”
Turbomach. Jpn.
,
18
(
12
), pp.
691
698
.10.11458/tsj1973.18.691
36.
ASTM
,
2016
, “
Standard Test Method for Cavitation Erosion Using Vibratory Apparatus
,”
ASTM
,
West Conshohocken, PA
, Standard No. ASTM G32-16, pp.
1
20
.
37.
Fujisawa
,
N.
,
Kikuchi
,
T.
,
Fujisawa
,
K.
, and
Yamagata
,
T.
,
2017
, “
Time-Resolved Observations of Pit Formation and Cloud Behavior in Cavitating Jet
,”
Wear
,
386–387
, pp.
99
105
.10.1016/j.wear.2017.06.006
38.
Fujisawa
,
N.
,
Horiuchi
,
T.
,
Fujisawa
,
K.
, and
Yamagata
,
T.
,
2019
, “
Experimental Observation of the Erosion Pattern, Pits, and Shockwave Formation in a Cavitating Jet
,”
Wear
,
418–419
, pp.
265
272
.10.1016/j.wear.2018.10.014
39.
Nishimura
,
S.
,
Takakuwa
,
O.
, and
Soyama
,
H.
,
2012
, “
Similarity Law on Shedding Frequency of Cavitation Cloud Induced by a Cavitating Jet
,”
J. Fluid Sci. Technol.
,
7
(
3
), pp.
405
420
.10.1299/jfst.7.405
40.
Sato
,
K.
,
Taguchi
,
Y.
, and
Hayashi
,
S.
,
2013
, “
High Speed Observation of Periodic Cavity Behavior in a Convergent-Divergent Nozzle for Cavitating Water Jet
,”
J. Flow Control, Meas. Visualization
,
1
(
3
), pp.
102
107
.10.4236/jfcmv.2013.13013
41.
Hutli
,
E.
,
Nedeljkovic
,
M. S.
,
Radovic
,
N. A.
, and
Bonyár
,
A.
,
2016
, “
The Relation Between the High Speed Submerged Cavitating Jet Behaviour and the Cavitation Erosion Process
,”
Int. J. Multiphase Flow
,
83
, pp.
27
38
.10.1016/j.ijmultiphaseflow.2016.03.005
42.
Soyama
,
H.
, and
Lichtarowicz
,
A.
,
1996
, “
Cavitating Jets -Similarity Correlations
,”
J. Jet Flow Eng.
,
13
(
2
), pp.
9
19
.
43.
Lauterborn
,
W.
, and
Bolle
,
H.
,
1975
, “
Experimental Investigations of Cavitation-Bubble Collapse in the Neighbourhood of a Solid Boundary
,”
J. Fluid Mech.
,
72
(
2
), pp.
391
399
.10.1017/S0022112075003448
44.
Kato
,
H.
,
2016
, “
New Version Cavitation (Basics and Recent Advances)
,”
Morikita Publishing, Co
.,
Tokyo, Chiyoda-ku, Japan
.
45.
Kamisaka
,
H.
, and
Soyama
,
H.
,
2018
, “
Periodical Shedding of Cavitation Cloud Induced by a Cavitating Jet
,”
Proceedings of the 24th International Conference on Water Jetting
, Manchester, UK, Sept. 5, pp.
111
123
.
46.
Soyama
,
H.
, and
Lichtarowicz
,
A.
,
1998
, “
Useful Correlations for Cavitating Water Jet
,”
High Pressure Sci. Technol.
,
7
, pp.
1456
1458
.10.4131/jshpreview.7.1456
47.
Madavan
,
N. K.
,
Deutsch
,
S.
, and
Merkle
,
C. L.
,
1985
, “
Measurements of Local Skin Friction in a Microbubble-Modified Turbulent Boundary Layer
,”
J. Fluid Mech.
,
156
(
1
), pp.
237
256
.10.1017/S0022112085002075
48.
Tokunaga
,
K.
,
1987
, “
Reduction of Frictional Resistance of a Flat Plate by Microbubbles
,”
Trans. West–Jpn. Soc. Nav. Archit.
,
73
, pp.
79
82
.10.14856/wjsna.73.0_79
49.
Soyama
,
H.
,
Nagasaka
,
K.
,
Takakuwa
,
O.
, and
Naito
,
A.
,
2012
, “
Optimum Injection Pressure of a Cavitating Jet for Introducing Compressive Residual Stress Into Stainless Steel
,”
J. Power Energy Syst.
,
6
(
2
), pp.
63
75
.10.1299/jpes.6.63
You do not currently have access to this content.