Abstract

A ballistic compression type soft recovery system can stop a free-flying supersonic projectile in a controlled manner. The moment such a projectile enters the System, a normal shock gets created and starts hurtling down, to kick off a train of events involving shock reflections, diaphragm rupture, shock merger, creation of new shocks and contact discontinuities, and expansion wave-shock interactions. A good understanding of these phenomena and sensitivity of the System's performance to changes in design parameters is needed to design an efficient soft recovery system. Unfortunately, not much information is available about this. The present work fills this gap. We have developed a numerical model for the system and conducted sensitivity analyses using four design parameters; pressure, molecular weight, the ratio of specific heats, and temperature of gas used in the system. We show that while there is a strong, positive correlation between the first two parameters and projectile deceleration, the other two parameters are less critical. We conducted experiments to corroborate our conclusions and improve our numerical model. Post such improvements, we found the difference between simulation and experimental data to be acceptable. Experiments also confirmed the findings of our sensitivity studies. Finally, we conducted a two-dimensional finite volume analysis to understand the reasons underlying the residual difference between our numerical and experimental data. We show that such differences are due to pressure-rise at a point once a shock passes by it, and such a rise in pressure is attributable to boundary layer effects.

References

1.
Clarke
,
E. V.
,
Ruth
,
C. R.
,
Evans
,
J. W.
,
Bowen
,
J. E.
,
Hewitt
,
J. R.
, and
Stabile
,
J. L.
,
1981
, “
Large Caliber Projectile Soft Recovery
,”
U.S. Ballistic Research Laboratory
,
Aberdeen
, Memorandum Report No. ARBRL-MR-03083.
2.
Holzle
,
J.
,
2001
, “
Soft Recovery of Large Calibre Flying Processors
,”
Proceedings of the 19th International Symposium of Ballistics
, Interlaken, Switzerland, May 7–11, pp.
373
378
.
3.
Duarte
,
G. M.
,
1975
, “
Projectile Recovery Device
,” US Patent 5,477,733.
4.
Lambert
,
D.
,
Pope
,
M.
,
Jones
,
S.
, and
Muse
,
J.
,
2005
, “
Soft-Recovery of Explosively Formed Penetrators
,”
Proceedings of the 22nd International Symposium on Ballistics
,
Canada
, Nov 14–18, pp.
552
559
.
5.
Chung
,
D. T.
,
Rhee
,
I.
,
Joo
,
B. Y.
,
Jin
,
D. H.
,
Rim
,
O. K.
, and
Park
,
K. J.
,
2012
, “
Development of a Soft Recovery System of Supersonic Projectiles
,”
Eng. Trans.
,
60
(
1
), pp.
3
14
.http://et.ippt.gov.pl/index.php/et/article/view/128
6.
Decker
,
R. J.
,
Yakimenko
,
O. A.
,
Hollis
,
M. S.
, and
Sweeney
,
P. J.
,
2011
, “
On the Development of the Artillery Flight Characterization Electronics Rescue Kit
,”
AIAA
Paper No. 2011-2519.10.2514/6.2011-2519
7.
Teng
,
R. N.
,
1972
, “
Ballistic Compression Decelerator
,” US Patent 3,678,745.
8.
Covey
,
W. B.
,
Mastandrea
,
J. R.
, and
Teng
,
R. N.
,
1976
, “
Projectile Recovery System With Quick Opening Valves
,” US Patent 3,940,981.
9.
Tevelow
,
F. L.
,
1981
, “
Soft Recovery Method for Gunfired Shells
,” US Patent 4,300,389.
10.
Curchack
,
H. D.
, and
Hahn
,
A. D.
,
1982
, “
Multi-Caliber Projectile Soft Recovery System
,” US Patent 4,345,460.
11.
Domen
,
J. K.
, and
Black
,
J. W.
,
1992
, “
Fluid Decelerator for High Energy Projectiles
,” US Patent 5,125,343.
12.
Ilyong
,
Y.
,
Seungsoo
,
L.
, and
Chongdu
,
C.
,
2006
, “
Design Study of a Small Scale Soft Recovery System
,”
J. Mech. Sci. Technol.
,
20
(
11
), pp.
1961
1971
.10.1007/BF03027589
13.
Birk
,
A.
, and
Kooker
,
D. E.
,
2001
, “
A Novel Soft Recovery System for the 155-mm Projectile and Its Numerical Simulation
,”
Army Research Laboratory
,
Aberdeen, UK
, Report No. ARL-TR-2462.
14.
Anderson
,
J.
, and
John
,
D.
,
1990
, “
Compressible Flow - Some History and Introductory Thoughts
,”
Modern Compressible Flow—With Historical Perspective
, 2nd ed.,
McGraw-Hill Publishing Company
,
Singapore
, pp.
1
31
.
15.
Thompson
,
P. A.
,
1972
, “
One-Dimensional Unsteady Flow
,”
Compressible Fluid Dynamics
,
McGraw-Hill Company
,
New York
, pp.
374
442
.
16.
Courant
,
R.
, and
Friedrichs
,
K.
,
1956
, “
One Dimensional Flows
,”
Supersonic Flow and Shock
,
Waves H.
Bohr
,
R.
Courant
, and
J.
Stoker
, eds.,
Interscience Publishers
,
New York
, pp.
79
197
.
17.
Resler
,
E. L.
,
Lin
,
S. C.
, and
Kantrowitz
,
A.
,
1952
, “
The Production of High Temperature Gases in Shock Tubes
,”
J. Appl. Phys.
,
23
(
12
), pp.
1390
1399
.10.1063/1.1702080
18.
Shapiro
,
A. H.
,
1954
, “
Unsteady, One-Dimensional Flow
,”
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
2
,
The Ronald Press Co
,
New York
, pp.
960
962
.
19.
Laney
,
C. B.
,
1998
, “
The Riemann Problem
,”
Computational Gas Dynamics
,
Cambridge University Press
,
UK
, pp.
72
77
.
20.
PCB PIEZOTRONICS
, “
Model 113B23 ICP Pressure Sensor Installation and Operating Manual
,” PCB Piezotronics, New York, accessed Oct. 28,
2020
, https://www.pcb.com/contentstore/docs/pcb_corporate/pressure/products/manuals/113b23.pdf
21.
Emrich
,
R. J.
, and
Wheeler
,
D. B.
,
1958
, “
Wall Effects in Shock Tube Flow
,”
Phys. Fluids
,
1
(
1
), pp.
14
23
.10.1063/1.1724329
22.
Austin
,
J. M.
, and
Bodony
,
D. J.
,
2011
, “
Wave Propagation in Gaseous Small-Scale Channel Flows
,”
Shock Waves
,
21
(
6
), pp.
547
557
.10.1007/s00193-011-0330-2
23.
Zeitoun
,
D. E.
,
2014
, “
Microsize and Initial Pressure Effects on Shock Wave Propagation in a Tube
,”
Shock Waves
,
24
(
5
), pp.
515
520
.10.1007/s00193-014-0512-9
24.
Mirels
,
H.
, and
Braun
,
W. H.
,
1957
, “
Nonuniformities in Shock-Tube Flow Due to Unsteady-Boundary-Layer Action
,” National Advisory Committee for Aeronautics, NACA, Washington, DC, Report No. 4021.
25.
Brouillette
,
M.
,
2003
, “
Shock Waves at Microscales
,”
Shock Waves
,
13
(
1
), pp.
3
12
.10.1007/s00193-003-0191-4
26.
Mirshekari
,
G.
,
Brouillette
,
M.
,
Giordano
,
J.
,
Hébert
,
C.
,
Parisse
,
J. D.
, and
Perrier
,
P.
,
2013
, “
Shock Waves in Microchannels
,”
J. Fluid Mech.
,
724
, pp.
259
283
.10.1017/jfm.2013.138
27.
Petersen
,
E.
, and
Hanson
,
R.
,
2001
, “
Nonideal Effects Behind Reflected Shock Waves in a High-Pressure Shock Tube
,”
Shock Waves
,
10
(
6
), pp.
405
420
.10.1007/PL00004051
28.
Grogan
,
K.
, and
Ihme
,
M.
,
2020
, “
StanShock: A Gas-Dynamic Model for Shock Tube Simulations With Non-Ideal Effects and Chemical Kinetics
,”
Shock Waves
,
30
(
4
), pp.
425
438
.10.1007/s00193-019-00935-x
29.
Emrich
,
R. J.
, and
Curtis
,
C. W.
,
1953
, “
Attenuation in the Shock Tube
,”
J. Appl. Phys.
,
24
(
3
), pp.
360
363
.10.1063/1.1721279
You do not currently have access to this content.