Abstract

This work investigates the siphon break phenomenon associated with pipe leakage location. The present study is divided into two parts: (1) an unsteady three-dimensional (3D) computational fluid dynamics (CFD) model is developed to simulate the pressure head (water level) and discharge in the simulated siphon using the volume-of-fluid (VOF) technique under no-leakage condition and (2) using the model developed in the first part we investigated the siphon break phenomenon associated with pipe leakage location. The calculated results of transient water level and discharge rate at the simulated siphon for the no-leakage condition were in good agreement with the experimental measurements. In addition, the velocity, pressure fields, and phase fractions in the siphon pipe were analyzed in depth. The methodology and findings presented show that leakage above the hydraulic grade line and close to the top inverted U section of the siphon pipe ultimately leads to the siphon breakage, which is not the case for a leakage below the hydraulic grade line. It is also concluded that if leakage is above the hydraulic grade line and the leakage position is far away from the upper horizontal section of the siphon pipe, it may not lead to the immediate siphon breakage as ingested air gets removed with siphoning water, allowing it further time to cause complete siphon breakage.

References

1.
Qin
,
L.
,
Leon
,
A. S.
,
Bian
,
L.
,
Dong
,
L.-L.
,
Verma
,
V.
, and
Yolcu
,
A.
,
2019
, “
A Remotely-Operated Siphon System for Water Release From Wetlands and Shallow Ponds
,”
IEEE Access
,
7
, pp.
157680
157687
.10.1109/ACCESS.2019.2950270
2.
Leon
,
A. S.
, and
Verma
,
V.
,
2019
, “
Towards Smart and Green Flood Control: Remote and Optimal Operation of Control Structures in a Network of Storage Systems for Mitigating Floods
,”
2019 ASCE-EWRI World Environmental & Water Resource Congress
, May 19–23, Pittsburgh, PA, pp.
177
189
.10.1061/9780784482339.019
3.
Ghosh
,
S. N.
,
2014
,
Flood Control and Drainage Engineering
, 4th ed.,
CRC Press, Taylor & Francis Group
,
London
.
4.
Potter
,
A.
, and
Barnes
,
F. H.
,
1971
, “
The Siphon
,”
Phys. Educ.
,
6
(
5
), pp.
362
366
.10.1088/0031-9120/6/5/005
5.
Hughes
,
S. W.
,
2010
, “
A Practical Example of a Siphon at Work
,”
Phys. Educ.
,
45
(
2
), pp.
162
166
.10.1088/0031-9120/45/2/006
6.
Ramette
,
J. J.
, and
Ramette
,
R. W.
,
2011
, “
Siphonic Concepts Examined: A Carbon Dioxide Gas Siphon and Siphons in Vacuum
,”
Phys. Educ.
,
46
(
4
), pp.
412
416
.10.1088/0031-9120/46/4/006
7.
Richert
,
A.
, and
Binder
,
P. M.
,
2011
, “
Siphons, Revisited
,”
Phys. Teach.
,
49
(
2
), pp.
78
80
.10.1119/1.3543576
8.
Ervine
,
D.
,
1976
, “
The Design and Modelling of Air-Regulated Siphon Spillways
,”
Proc. Inst. Civ. Eng.
,
61
(
2
), pp.
383
400
.10.1680/iicep.1976.3446
9.
Ervine
,
D. A.
, and
Oliver
,
G. C. S.
,
1980
, “
The Full-Scale Behavior of Air-Regulated Siphon Spillways
,”
Proc. Inst. Civ. Eng.
,
69
(
3
), pp.
687
706
.10.1680/iicep.1980.2371
10.
Babaeyan-Koopaei
,
K.
,
Valentine
,
E. M.
, and
Ervine
,
D. A.
,
2002
, “
Case Study on Hydraulic Performance of Brent Reservoir Siphon Spillway
,”
J. Hydraulic Eng.
,
128
(
6
), pp.
562
567
.10.1061/(ASCE)0733-9429(2002)128:6(562)
11.
Viridi
,
S.
,
Suprijadi
,
Khotimah
,
S. N.
,
Novitrian
., and
Masterika
,
F.
,
2011
, “
Self-Siphon Simulation Using Molecular Dynamics Method
,” arXiv:1104.1847.
12.
Cai
,
Y.-l.
,
Sun
,
H.-y.
,
Shang
,
Y.-Q.
, and
Xiong
,
X.-l.
,
2014
, “
An Investigation of Flow Characteristics in Slope Siphon Drains
,”
J. Zhejiang Univ. Sci. A
,
15
(
1
), pp.
22
30
.10.1631/jzus.A1300178
13.
Leon
,
A. S.
, and
Alnahit
,
A.
,
2016
, “
A Remotely Controlled Siphon System for Dynamic Water Storage Management
,”
IAHR International Symposium on Hydraulic Structures
, June 27-30, 2016, Portland, OR, pp.
177
189
.
14.
Aydin
,
M.
,
Öztürk
,
M.
, and
Yücel
,
A.
,
2015
, “
Experimental and Numerical Investigation of Self-Priming Siphon Side Weir on a Straight Open Channel
,”
Flow Meas. Instrumentation
,
45
, pp.
140
150
.10.1016/j.flowmeasinst.2015.06.014
15.
Kang
,
S. H.
,
Ahn
,
H. S.
,
Kim
,
J. M.
,
Joo
,
H. M.
,
Lee
,
K.-Y.
,
Seo
,
K.
,
Chi
,
D. Y.
,
Yoon
,
J.
,
Jeun
,
G. D.
, and
Kim
,
M. H.
,
2013
, “
Experimental Study of Siphon Breaking Phenomenon in the Real-Scaled Research Reactor Pool
,”
Nucl. Eng. Des.
,
255
, pp.
28
37
.10.1016/j.nucengdes.2012.09.032
16.
Park
,
I. K.
,
Yoon
,
H. Y.
, and
Park
,
H. B.
,
2018
, “
Numerical Approach to Siphon Break Phenomena in a Research Reactor Pool Using the Cupid Code
,”
Nucl. Eng. Des.
,
326
, pp.
133
142
.10.1016/j.nucengdes.2017.11.001
17.
Ramajo
,
D. E.
,
Corzo
,
S. F.
, and
Nigro
,
N. M.
,
2020
, “
Numerical Simulation of Siphon Breaker Systems for Open-Type Research Reactors
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
6
(
2
), p.
021202
.10.1115/1.4045121
18.
Direct
,
C.
,
2018
, OpenFOAM 6.0.
19.
Kamand
,
F. Z.
,
1988
, “
Hydraulic Friction Factors for Pipe Flow
,”
J. Irrig. Drain. Eng.
,
114
(
2
), pp.
311
323
.10.1061/(ASCE)0733-9437(1988)114:2(311)
20.
Bernuth
,
R. D. V.
,
1990
, “
Simple and Accurate Friction Loss Equation for Plastic Pipe
,”
J. Irrig. Drain. Eng.
,
116
(
2
), pp.
294
298
.10.1061/(ASCE)0733-9437(1990)116:2(294)
21.
Romeo
,
E.
,
Royo
,
C.
, and
Monzón
,
A.
,
2002
, “
Improved Explicit Equations for Estimation of the Friction Factor in Rough and Smooth Pipes
,”
Chem. Eng. J.
,
86
(
3
), pp.
369
374
.10.1016/S1385-8947(01)00254-6
22.
De Marchi
,
G.
,
1950
,
Idráulica: Basi Scientifiche E Applicazioni Tecniche
,
Ulrico Hoepli
,
Milano
.
23.
Christodoulou
,
G. C.
,
1991
, “
Drop Manholes in Supercritical Pipelines
,”
J. Irrig. Drain. Eng.
,
117
(
1
), pp.
37
47
.10.1061/(ASCE)0733-9437(1991)117:1(37)
24.
Neto
,
O. R.
,
de Miranda
,
J. H.
,
Frizzone
,
J. A.
, and
Workman
,
S. R.
,
2009
, “
Local Head Loss of Non-Coaxial Emitters Inserted in Polyethylene Pipe
,”
Trans. ASABE
,
52
(
3
), pp.
729
738
.10.13031/2013.27394
25.
Haaland
,
S. E.
,
1983
, “
Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow
,”
ASME J. Fluids Eng.
,
105
(
1
), pp.
89
90
.10.1115/1.3240948
26.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
27.
Erwee
,
M.
,
Reynolds
,
Q.
,
Zietsman
,
J.
, and
Bezuidenhout
,
P.
,
2019
, “
Multiphase Flow Modelling of Lancing of Furnace Tap-Holes: Validation of Multiphase Flow Simulated in OpenFOAM®
,”
J. Southern Afr. Inst. Min. Metall.
,
119
(
6
), pp.
551
556
.10.17159/2411-9717/670/2019
28.
Foundation
,
T. O.
,
2015
, OpenFOAM v6 User Guide.
29.
Hirt
,
C.
, and
Nichols
,
B.
,
1981
, “
Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
30.
Berberović
,
E.
,
van Hinsberg
,
N. P.
,
Jakirlić
,
S.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2009
, “
Drop Impact Onto a Liquid Layer of Finite Thickness: Dynamics of the Cavity Evolution
,”
Phys. Rev. E
,
79
(
3
), p.
036306
.10.1103/PhysRevE.79.036306
31.
Berberović
,
E.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2011
, “
Computational Study of Hydrodynamics and Heat Transfer Associated With a Liquid Drop Impacting a Hot Surface
,”
Computational Fluid Dynamics 2010
,
A.
Kuzmin
, ed.,
Springer
,
Berlin Heidelberg
, pp.
543
548
.
32.
Scheufler
,
H.
, and
Roenby
,
J.
,
2021
, “
Twophaseflow: An Openfoam Based Framework for Development of Two Phase Flow Solvers
,” arXiv:2103.00870.
33.
Wilcox
,
D. C.
,
1993
,
Turbulence Modelling for CFD
,
DCW Industries
,
La Cañada
.
34.
Launder
,
B.
, and
Spalding
,
D.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.10.1016/0045-7825(74)90029-2
35.
Hager
,
W. H.
,
2012
, “
Wilfrid Noel Bond and the Bond Number
,”
J. Hydraulic Res.
,
50
(
1
), pp.
3
9
.10.1080/00221686.2011.649839
36.
Ding
,
M.
, and
Kantzas
,
A.
,
2007
, “
Capillary Number Correlations for Gas-Liquid Systems
,”
J. Can. Pet. Technol.
,
46
(
02
), p.
02
.10.2118/07-02-03
37.
Yeoh
,
G.
, and
Tu
,
J.
,
2010
,
Solution Methods for Multi-Phase Flows
,
Butterworth-Heinemann
,
Oxford
, 12, chap. 3, pp.
95
242
.
38.
Van Leer
,
B.
,
1997
, “
Towards the Ultimate Conservative Difference Scheme
,”
J. Comput. Phys.
,
135
(
2
), pp.
229
248
.10.1006/jcph.1997.5704
39.
Verma
,
V.
,
2021
, “
Low Cost and Reliable Integrated Hardware and Software Framework for Remotely Operated Water Release From Storage Units
,” Ph.D. Dissertation,
Florida International University
,
Miami. FL
.
40.
Seo
,
K.
,
Kang
,
S. H.
,
Kim
,
J. M.
,
Lee
,
K.-Y.
,
Jeong
,
N.
,
Chi
,
D.-Y.
,
Yoon
,
J.
, and
Kim
,
M. H.
,
2012
, “
Experimental and Numerical Study for a Siphon Breaker Design of a Research Reactor
,”
Ann. Nucl. Energy
,
50
, pp.
94
102
.10.1016/j.anucene.2012.06.005
41.
Günther
,
A.
, and
Jensen
,
K. F.
,
2006
, “
Multiphase Microfluidics: From Flow Characteristics to Chemical and Materials Synthesis
,”
Lab Chip
,
6
(
12
), pp.
1487
1503
.10.1039/B609851G
You do not currently have access to this content.