Abstract

The effects of an active flapping jet actuator on the wake flow dynamics behind a circular cylinder in wind tunnel tests were investigated. An active flapping jet actuator was embedded in the cylinder in advance to invoke a spontaneous flapping jet into the cylinder's wake. The experiment, which was performed in a wind tunnel with a Reynolds number of Re = 1.99 × 104, was based on the oncoming wind speed, cylinder diameter, and kinematic viscosity of the air at the laboratory's temperature. The flow-field structures behind the cylinder model with different dimensionless jet momentum coefficients, Cu, were obtained using the high-speed particle image velocimetry technique. The proper orthogonal decomposition (POD) method was used to represent the variation of the POD mode energy, mode coefficients, and the reconstructed spreading vorticity. The dynamic temporal evolution and time-averaged results in the near wake region of the cylinder with and without active flapping-jet control were calculated and analyzed to illustrate the rich phenomena produced by, and the control effect of, the flapping jet. For Cu values up to 0.0554, the periodic vortex shedding was pushed to farther wakes. Meanwhile, the time-averaged wake changed considerably, and the distributions of the turbulent kinetic energy and Reynolds shear stress decreased significantly. A data-driven dynamic mode decomposition method was used to extract the coherent structure of the wake of the cylinder embedded with the flapping jet actuator. The Strouhal number of the main mode of the Cu = 0.0865 case was different from the natural case.

References

1.
Owen
,
J. C.
,
Bearman
,
P. W.
, and
Szewczyk
,
A. A.
,
2001
, “
Passive Control of VIV With Drag Reduction
,”
J. Fluids Struct.
,
15
(
3–4
), pp.
597
605
.10.1006/jfls.2000.0358
2.
Achenbach
,
E.
,
1971
, “
Influence of Surface Roughness on the Cross-Flow Around a Circular Cylinder
,”
J. Fluid Mech.
,
46
(
2
), pp.
321
335
.10.1017/S0022112071000569
3.
Zhou
,
B.
,
Wang
,
X.
,
Guo
,
W.
,
Gho
,
W. M.
, and
Tan
,
S. K.
,
2015
, “
Control of Flow Past a Dimpled Circular Cylinder
,”
Exp. Therm. Fluid Sci.
,
69
, pp.
19
26
.10.1016/j.expthermflusci.2015.07.020
4.
Gao
,
D. L.
,
Huang
,
Y. W.
,
Chen
,
W. L.
,
Chen
,
G. B.
, and
Li
,
H.
,
2019
, “
Control of Circular Cylinder Flow Via Bilateral Splitter Plates
,”
Phys. Fluids
,
31
(
5
), p.
057105
.10.1063/1.5097309
5.
Gao
,
D. L.
,
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2017
, “
Flow Around a Circular Cylinder With Slit
,”
Exp. Therm. Fluid Sci.
,
82
, pp.
287
301
.10.1016/j.expthermflusci.2016.11.025
6.
Hsu
,
L. C.
, and
Chen
,
C. L.
,
2020
, “
The Drag and Lift Characteristics of Flow Around a Circular Cylinder With a Slit
,”
Eur. J. Mech. - B/Fluids
,
82
, pp.
135
155
.10.1016/j.euromechflu.2020.02.009
7.
Shi
,
X. D.
, and
Feng
,
L. H.
,
2015
, “
Control of Flow Around a Circular Cylinder by Bleed Near the Separation Points
,”
Exp Fluids
,
56
(
12
), p.
214
.10.1007/s00348-015-2083-7
8.
Choi
,
H.
,
Jeon
,
W. P.
, and
Kim
,
J.
,
2008
, “
Control of Flow Over a Bluff Body
,”
Annu. Rev. Fluid Mech.
,
40
(
1
), pp.
113
139
.10.1146/annurev.fluid.39.050905.110149
9.
Kumar
,
R.
, and
de Leon
,
R. D.
,
2008
, “
Novel Adaptive Receiver for Multilevel Quadrature Amplitude Modulated Signals
,”
IEEE Aerospace Conference
,
IEEE
,
Big Sky, MT
, Mar. 1-8, pp.
1
11
.10.1109/AERO.2008.4526363
10.
Chen
,
W. L.
,
Xin
,
D. B.
,
Xu
,
F.
,
Li
,
H.
,
Ou
,
J. P.
, and
Hu
,
H.
,
2013
, “
Suppression of Vortex-Induced Vibration of a Circular Cylinder Using Suction-Based Flow Control
,”
J. Fluids Struct.
,
42
, pp.
25
39
.10.1016/j.jfluidstructs.2013.05.009
11.
Chen
,
W. L.
,
Li
,
H.
, and
Hu
,
H.
,
2014
, “
An Experimental Study on a Suction Flow Control Method to Reduce the Unsteadiness of the Wind Loads Acting on a Circular Cylinder
,”
Exp. Fluids
,
55
(
4
), pp.
1
20
.
12.
Feng
,
L. H.
, and
Wang
,
J. J.
,
2010
, “
Circular Cylinder Vortex-Synchronization Control With a Synthetic Jet Positioned at the Rear Stagnation Point
,”
J. Fluid Mech.
,
662
, pp.
232
259
.10.1017/S0022112010003174
13.
Benard
,
N.
, and
Moreau
,
E.
,
2013
, “
Response of a Circular Cylinder Wake to a Symmetric Actuation by Non-Thermal Plasma Discharges
,”
Exp. Fluids
,
54
(
2
), pp.
1
19
.
14.
Muddada
,
S.
, and
Patnaik
,
B. S. V.
,
2010
, “
An Active Flow Control Strategy for the Suppression of Vortex Structures Behind a Circular Cylinder
,”
Eur. J. Mech. B/Fluids
,
29
(
2
), pp.
93
104
.10.1016/j.euromechflu.2009.11.002
15.
Wong
,
K. W. L.
,
Zhao
,
J.
,
Lo Jacono
,
D.
,
Thompson
,
M. C.
, and
Sheridan
,
J.
,
2017
, “
Experimental Investigation of Flow-Induced Vibration of a Rotating Circular Cylinder
,”
J. Fluid Mech.
,
829
, pp.
486
511
.10.1017/jfm.2017.540
16.
Posdziech
,
O.
, and
Grundmann
,
R.
,
2001
, “
Electromagnetic Control of Seawater Flow Around Circular Cylinders
,”
Eur. J. Mech. B/Fluids
,
20
(
2
), pp.
255
274
.10.1016/S0997-7546(00)01111-0
17.
Feng
,
L. H.
, and
Wang
,
J. J.
,
2014
, “
Modification of a Circular Cylinder Wake With Synthetic Jet: Vortex Shedding Modes and Mechanism
,”
Eur. J. Mech. B/Fluids
,
43
, pp.
14
32
.10.1016/j.euromechflu.2013.06.011
18.
Béra
,
J. C.
,
Michard
,
M.
,
Sunyach
,
M.
, and
Comte-Bellot
,
G.
,
2000
, “
Changing Lift and Drag by Jet Oscillation: Experiments on a Circular Cylinder With Turbulent Separation
,”
Eur. J. Mech. B/Fluids
,
19
(
5
), pp.
575
595
.10.1016/S0997-7546(00)00122-9
19.
Andino
,
M. Y.
,
Lin
,
J. C.
,
Washburn
,
A. E.
,
Whalen
,
E. A.
,
Graff
,
E. C.
, and
Wygnanski
,
I. J.
,
2015
, “
Flow Separation Control on a Full-Scale Vertical Tail Model Using Sweeping Jet Actuators
,”
AIAA
Paper No. 2015-0785.10.2514/6.2015-0785
20.
Jentzsch
,
M.
,
Taubert
,
L.
, and
Wygnanski
,
I.
,
2019
, “
Using Sweeping Jets to Trim and Control a Tailless Aircraft Model
,”
AIAA J.
,
57
(
6
), pp.
2322
2334
.10.2514/1.J056962
21.
Dolgopyat
,
D.
, and
Seifert
,
A.
,
2019
, “
Active Flow Control Virtual Maneuvering System Applied to Conventional Airfoil
,”
AIAA J.
,
57
(
1
), pp.
72
89
.10.2514/1.J056258
22.
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Rutledge
,
J. L.
,
2019
, “
Sweeping Jets Issuing From the Face of a Backward-Facing Step
,”
ASME J. Fluids Eng.
,
141
(
12
), p. 121201.10.1115/1.4043576
23.
Raman
,
G.
, and
Raghu
,
S.
,
2004
, “
Cavity Resonance Suppression Using Miniature Fluidic Oscillators
,”
AIAA J.
,
42
(
12
), pp.
2608
2612
.10.2514/1.521
24.
Tomac
,
M. N.
,
2020
, “
Novel Impinging Jets-Based Non-Periodic Sweeping Jets
,”
J. Visual.
,
23
(
3
), pp.
369
372
.10.1007/s12650-020-00633-2
25.
Spyropoulos
,
C. E.
,
1964
, “
A Sonic Oscillator
,”
Proceedings of the Fluid Amplification Symposium
, Vol.
48
,
Harry Diamond Lab
,
Washington, DC
, pp.
27
52
.
26.
Kim
,
S. H.
,
Kim
,
H. D.
, and
Kim
,
K. C.
,
2019
, “
Measurement of Two-Dimensional Heat Transfer and Flow Characteristics of an Impinging Sweeping Jet
,”
Int. J. Heat Mass Transfer
,
136
, pp.
415
426
.10.1016/j.ijheatmasstransfer.2019.03.021
27.
Wang
,
S.
,
Batikh
,
A.
,
Baldas
,
L.
,
Kourta
,
A.
,
Mazellier
,
N.
,
Colin
,
S.
, and
Orieux
,
S.
,
2019
, “
On the Modelling of the Switching Mechanisms of a Coanda Fluidic Oscillator
,”
Sens. Actuators A: Phys.
,
299
, p.
111618
.10.1016/j.sna.2019.111618
28.
Park
,
T.
,
Kara
,
K.
, and
Kim
,
D.
,
2018
, “
Flow Structure and Heat Transfer of a Sweeping Jet Impinging on a Flat Wall
,”
Int. J. Heat Mass Transfer
,
124
, pp.
920
928
.10.1016/j.ijheatmasstransfer.2018.04.016
29.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
30.
Feng
,
L. H.
,
Wang
,
J. J.
, and
Pan
,
C.
,
2011
, “
Proper Orthogonal Decomposition Analysis of Vortex Dynamics of a Circular Cylinder Under Synthetic Jet Control
,”
Phys. Fluids
,
23
(
1
), p.
014106
.10.1063/1.3540679
31.
Konstantinidis
,
E.
,
Balabani
,
S.
, and
Yianneskis
,
M.
,
2007
, “
Bimodal Vortex Shedding in a Perturbed Cylinder Wake
,”
Phys. Fluids
,
19
(
1
), pp.
011701
011705
.10.1063/1.2432152
32.
Perrin
,
R.
,
Braza
,
M.
,
Cid
,
E.
,
Cazin
,
S.
,
Barthet
,
A.
,
Sevrain
,
A.
,
Mockett
,
C.
, and
Thiele
,
F.
,
2007
, “
Obtaining Phase Averaged Turbulence Properties in the Near Wake of a Circular Cylinder at High Reynolds Number Using POD
,”
Exp Fluids
,
43
(
2–3
), pp.
341
355
.10.1007/s00348-007-0347-6
33.
Zhang
,
Q.
,
Liu
,
Y.
, and
Wang
,
S.
,
2014
, “
The Identification of Coherent Structures Using Proper Orthogonal Decomposition and Dynamic Mode Decomposition
,”
J. Fluids Struct.
,
49
, pp.
53
72
.10.1016/j.jfluidstructs.2014.04.002
34.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.10.1017/S0022112010001217
35.
Rowley
,
C. W.
,
Mezi
,
I.
,
Bagheri
,
S.
,
Schlatter
,
P.
, and
Henningson
,
D. S.
,
2009
, “
Spectral Analysis of Nonlinear Flows
,”
J. Fluid Mech.
,
641
, pp.
115
127
.10.1017/S0022112009992059
36.
Schmid
,
P. J.
,
2011
, “
Application of the Dynamic Mode Decomposition to Experimental Data
,”
Exp Fluids
,
50
(
4
), pp.
1123
1130
.10.1007/s00348-010-0911-3
You do not currently have access to this content.