Abstract

We address the flows of dense suspensions of particles within the framework of two-velocity continuum. Thermodynamics of such a continuum is developed by the method suggested in the papers of Landau and Khalatnikov. As an application, we consider the convective settling problem. We capture the Boycott effect and prove that the enhanced sedimentation occurs in a tilted vessel due to vortices. We do not call on additional interphase forces like the Stokes drag, the virtual mass force, the Archimedes force, the Basset-Boussinesq force and etc. Instead, we apply a generalized Fick's law for the particle mass concentration flux vector.

References

1.
Dmitriev
,
A.
,
Makarov
,
P.
, and
Bouz
,
M. E.
,
2015
, “
A New Regime of Nucleate Boiling in Microsphere Mesostructures: Jumping Pool Boiling
,”
Tech. Phys. Lett.
,
41
(
3
), pp.
288
290
.10.1134/S1063785015030190
2.
Eskin
,
D.
, and
Miller
,
M.
,
2008
, “
A Model of Non-Newtonian Slurry Flow in a Fracture
,”
Powder Technol.
,
182
(
2
), pp.
313
322
.10.1016/j.powtec.2007.06.027
3.
Boycott
,
A.
,
1920
, “
Sedimentation of Blood Corpuscles
,”
Nature
,
104
(
2621
), pp.
532
532
.10.1038/104532b0
4.
Ungarish
,
M.
,
1993
,
Hydrodynamics of Suspensions: Fundamentals of Centrifugal and Gravity Separation
,
Springer-Verlag
,
Berlin/Heidelberg, Germany
.
5.
Nakamura
,
H.
, and
Kuroda
,
K.
,
1937
, “
La Cause de L'acceleration de la Vitesse de Sedimentation Des Suspensions Dans Les Recipients Inclines
,”
Keijo J. Med.
,
8
, pp.
256
296
.
6.
Ponder
,
E.
,
1925
, “
On Sedimentation and Rouleaux Formation
,”
Q. J. Exp. Physiol.
,
15
(
3
), pp.
235
252
.10.1113/expphysiol.1925.sp000356
7.
Nevskii
,
Y.
, and
Osiptsov
,
A.
,
2011
, “
Slow Gravitational Convection of Disperse Systems in Domains With Inclined Boundaries
,”
Fluid Dyn.
,
46
(
2
), pp.
225
239
.10.1134/S0015462811020050
8.
Nevskii
,
Y.
, and
Osiptsov
,
A.
,
2008
, “
The Effect of Unsteady and Memory Forces in the Gravity Convection of Suspensions
,”
Moscow Univ. Mech. Bull.
,
63
(
4
), pp.
85
88
.10.3103/S0027133008040018
9.
Einstein
,
A.
,
1906
, “
A New Determination of Molecular Dimensions
,”
Ann. Phys.
,
324
(
2
), pp.
289
306
.10.1002/andp.19063240204
10.
Batchelor
,
G.
, and
Green
,
J.
,
1972
, “
The Determination of the Bulk Stress in a Suspension of Spherical Particles to Order c2
,”
J. Fluid Mech.
,
56
(
03
), pp.
401
427
.10.1017/S0022112072002435
11.
Eilers
,
H.
,
1941
, “
The Viscosity of the Emulsion of Highly Viscous Substances as Function of Concentration
,”
Colloid Polym. Sci.
,
97
, pp.
313
321
.
12.
Mooney
,
M.
,
1951
, “
The Viscosity of a Concentrated Suspension of Spherical Particles
,”
Colloid Polym. Sci.
,
6
(
2
), pp.
162
170
.10.1016/0095-8522(51)90036-0
13.
Quemada
,
D.
,
1978
, “
Rheology of Concentrated Disperse Systems III. General Features of the Propose Non-Newtonian Model. Comparison With Experimental Data
,”
Rheol. Acta
,
17
(
6
), pp.
643
653
.10.1007/BF01522037
14.
Krieger
,
I. M.
, and
Dougherty
,
T. J.
,
1959
, “
A Mechanism for Non-Newtonian Flow in Suspensions of Rigid Spheres
,”
Trans. Soc. Rheol.
,
3
(
1
), pp.
137
152
.10.1122/1.548848
15.
Stickel
,
J.
, and
Powell
,
R.
,
2005
, “
Fluid Mechanics and Rheology of Dense Suspensions
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
129
149
.10.1146/annurev.fluid.36.050802.122132
16.
Morris
,
J.
, and
Boulay
,
F.
,
1999
, “
Curvilinear Flows of Noncolloidal Suspensions: The Role of Normal Stresses
,”
J. Rheol.
,
43
(
5
), pp.
1213
1237
.10.1122/1.551021
17.
Baumgarten
,
A.
, and
Kamrin
,
K.
,
2019
, “
A General Fluid-Sediment Mixture Model and Constitutive Theory Validated in Many Flow Regimes
,”
J. Fluid Mech.
,
861
, pp.
721
764
.10.1017/jfm.2018.914
18.
Khalatnikov
,
I.
,
1989
,
Introduction to the Theory of Superfluidity
,
Addison-Wesley
,
New York
.
19.
Landau
,
L.
, and
Lifshits
,
E.
,
1987
,
Fluid Mechabics. Course of Theoretical Physics
,
Pergamon Press
,
Oxford, UK
.
20.
DeGroot
,
S.
, and
Mazur
,
P.
,
1962
,
Non Equilibrium Thermodynamics
,
North-Holland Publishing Company
,
Amsterdam, The Netherlands
.
21.
Blokhin
,
A.
, and
Dorovskii
,
V.
,
1995
,
Mathematical Modelling in the Theory of Multivelocity Continuum
,
Nova Science Publishers
,
New York
.
22.
Dorovskii
,
V.
, and
Perepechko
,
Y.
,
1996
, “
The Hydrodynamic Model of Solution in Cracking-Porous Media
,”
Russ. Geol. Geophys.
,
9
, pp.
123
134
.
23.
Shelukhin
,
V.
,
2014
, “
A Poroelastic Medium Saturated by a Two-Phase Capillary Fluid
,”
Continuum Mech. Thermodyn.
,
26
(
5
), pp.
619
638
.10.1007/s00161-013-0321-x
24.
Shelukhin
,
V.
,
2018
, “
Thermodynamics of Two-Phase Granular Fluids
,”
J. Non-Newtonian Fluid Mech.
,
262
, pp.
25
37
.10.1016/j.jnnfm.2018.02.004
25.
Anderson
,
T.
, and
Jackson
,
R.
,
1967
, “
Fluid Mechanical Description of Fluidized Beds. Equations of Motion
,”
Ind. Eng. Chem. Fundam.
,
6
(
4
), pp.
527
539
.10.1021/i160024a007
26.
Jackson
,
R.
,
1997
, “
Locally Averaged Equations of Motion for a Mixture of Identical Particles and a Newtonian Fluid
,”
Chem. Eng. Sci.
,
52
(
15
), pp.
2457
2469
.10.1016/S0009-2509(97)00065-1
27.
Buyevich
,
Y.
, and
Shchelchkova
,
I.
,
1979
, “
Flow of Dense Suspensions
,”
Prog. Aerosp. Sci.
,
18
, pp.
121
150
.10.1016/0376-0421(77)90004-5
28.
Zhang
,
D.
, and
Prosperetti
,
A.
,
1997
, “
Momentum and Energy Equations for Disperse Two-Phase Flows and Their Closure for Dilute Suspensions
,”
Int. J. Multiphase Flow
,
23
(
3
), pp.
425
453
.10.1016/S0301-9322(96)00080-8
29.
Miller
,
R.
,
Singh
,
J.
, and
Morris
,
J.
,
2009
, “
Suspensions Flow Modeling for General Geometries
,”
Chem. Eng. Sci.
,
64
(
22
), pp.
4597
4610
.10.1016/j.ces.2009.04.033
30.
Brady
,
J.
, and
Morris
,
J.
,
1997
, “
Microstructure of Strongly Sheared Suspensions and Its Impact on Rheology and Diffusion
,”
J. Fluid Mech.
,
348
, pp.
103
139
.10.1017/S0022112097006320
31.
Lhuillier
,
D.
,
2009
, “
Migration of Rigid Particles in Non-Brownian Viscous Suspensions
,”
Phys. Fluids
,
21
(
2
), p.
023302
.10.1063/1.3079672
32.
Nott
,
P.
, and
Brady
,
J.
,
1994
, “
Pressure-Driven Flow of Suspensions: Simulation and Theory
,”
J. Fluid Mech.
,
275
, pp.
157
199
.10.1017/S0022112094002326
33.
Crowe
,
C.
,
Schwarzkopf
,
J.
,
Sommerfield
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
,
Boca Raton, FL
.
34.
Shelukhin
,
V.
, and
Neverov
,
V.
,
2016
, “
Thermodynamics of Micropolar Bingham Fluids
,”
J. Non-Newtonian Fluid Mech.
,
236
, pp.
83
90
.10.1016/j.jnnfm.2016.08.005
35.
Leighton
,
D.
, and
Acrivos
,
F.
,
1987
, “
The Shear-Induced Migration of Particles in Concentrated Suspensions
,”
J. Fluid Mech.
,
181
(
1
), pp.
415
439
.10.1017/S0022112087002155
36.
Nott
,
P.
,
Guazzelli
,
E.
, and
Pouliquen
,
O.
,
2011
, “
The Suspension Balance Model Revisited
,”
Phys. Fluids
,
23
(
4
), p.
043304
.10.1063/1.3570921
37.
Schwarze
,
R.
,
Gladkyy
,
A.
,
Uhlig
,
F.
, and
Luding
,
S.
,
2013
, “
Rheology of Weakly Wetted Granular Materials: A Comparison of Experimental and Numerical Data
,”
Granular Matter
,
15
(
4
), pp.
455
465
.10.1007/s10035-013-0430-z
38.
Boyer
,
F.
,
Guazzelli
,
E.
, and
Pouliquen
,
O.
,
2011
, “
Unifying Suspension and Granular Rheology
,”
Phys. Rev. Lett.
,
107
(
18
), p.
188301
.10.1103/PhysRevLett.107.188301
39.
Pietsch
,
W.
,
2002
,
Agglomeration Processes: Phenomena, Technologies, Equipment
,
Wiley-VCH
,
Weinheim, Germany
.
40.
Guo
,
Y.
,
Wu
,
C.
, and
Thornton
,
C.
,
2011
, “
The Effects of Air and Particle Density Difference Segregation of Powder Mixtures During Die Filling
,”
Chem. Eng. Sci.
,
66
(
4
), pp.
661
673
.10.1016/j.ces.2010.11.017
41.
Guo
,
Y.
,
Wu
,
C.
,
Kafui
,
K.
, and
Thornton
,
C.
,
2011
, “
3ddem/Cfd Analysis of Size-Induced Segregation During Die Filling
,”
Powder Technol.
,
206
(
1–2
), pp.
177
188
.10.1016/j.powtec.2010.05.029
42.
Beeley
,
P.
,
2001
,
Foundry Technology
,
Butterworth-Heinemann
,
Oxford, UK
.
43.
Guazzelli
,
E.
, and
Hinch
,
J.
,
2011
, “
Fluctuations and Instability in Sedimentation
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
97
116
.10.1146/annurev-fluid-122109-160736
44.
Marchetti
,
B.
,
Bergougnoux
,
L.
, and
Guazzelli
,
E.
,
2021
, “
Falling Clouds of Particles in Vortical Flows
,”
J. Fluid Mech.
,
908
, p.
A30
.10.1017/jfm.2020.883
45.
Gillissen
,
J.
,
Ness
,
C.
,
Peterson
,
J.
,
Wilson
,
H.
, and
Cates
,
M.
,
2019
, “
Constitutive Model for Time-Dependent Flows of Shear-Thickening Suspensions
,”
Phys. Rev. Lett.
,
123
(
21
), p.
214504
.10.1103/PhysRevLett.123.214504
46.
Gillissen
,
J.
,
Ness
,
C.
,
Peterson
,
J.
,
Wilson
,
H.
, and
Cates
,
M.
,
2020
, “
Constitutive Model for Shear-Thickening Suspensions: Predictions for Steady Shear With Superposed Transverse Oscillations
,”
J. Rheol.
,
64
(
2
), pp.
353
365
.10.1122/1.5129657
47.
Acrivos
,
A.
, and
Herbolzheimer
,
E.
,
1979
, “
Enhanced Sedimentation in Settling Tanks With Inclined Walls
,”
J. Fluid Mech.
,
92
(
3
), pp.
435
457
.10.1017/S0022112079000720
48.
Leontovich
,
M.
,
1985
,
Introduction to Thermodynamics. Statistical Physics
,
Nauka, Moscow, Russia
.
49.
Ishii
,
M.
, and
Mishima
,
K.
,
1984
, “
Two-Fluid Model and Hydrodynamic Constitutive Relations
,”
Nucl. Eng. Des.
,
82
(
2–3
), pp.
107
126
.10.1016/0029-5493(84)90207-3
50.
Kinosita
,
K.
,
1949
, “
Sedimentation in Tilted Vessels
,”
J. Colloid Interface Sci.
,
4
(
5
), pp.
525
536
.10.1016/0095-8522(49)90049-5
51.
Hill
,
W. D.
,
Rothfus
,
R. R.
, and
Li
,
K.
,
1977
, “
Boundary-Enhanced Sedimentation Due to Settling Convection
,”
Int. J. Multiph. Flow
,
3
(
6
), pp.
561
583
.10.1016/0301-9322(77)90030-1
52.
McCaffery
,
S.
,
Elliott
,
L.
, and
Ingham
,
D.
,
1999
,
Enhanced Sedimentation in Inclined Fracture Channels
,
Computational Mechanics Publications
,
Southampton, Russia
.
You do not currently have access to this content.