Abstract

Among all aquatic species, mantas and rays swim by flapping their pectoral fins; this motion is similar to other fishes in terms of efficiency, but it gives better maneuverability and agility in turning. The fin's motion is featured by a traveling wave going opposite to the forward motion, producing a force thanks to momentum conservation. This article aims at understanding the swimming dynamics of rays, focusing on energy efficiency. A computational fluid dynamics (CFD) model of the swimming motion of a cownose ray has been implemented in openfoam, simulating the acceleration of the fish from still to the steady-state velocity using an overset mesh. In this analysis, the one degree-of-freedom dynamics of forward swimming is solved together with the fluid velocity and pressure. The effect of frequency and wavelength of fin motion on thrust, power, and velocity has been investigated and an analysis of the vortices in the wake showed has been performed. The energy efficiency of a self-propelled body has been defined in a novel way and it has been calculated for different motion conditions. The results showed that batoid fishes swim with high energy efficiency and that they are a promising source of inspiration for biomimetic autonomous underwater vehicles.

References

1.
Dabiri
,
J.
, and
Gordon
,
M.
,
2017
,
Animal Locomotion. Physical Principles and Adaptations
,
CRC Press, Taylor & Francis Group
,
Boca Raton, FL
.
2.
Moored
,
K.
,
Fish
,
F.
,
Kemp
,
T.
, and
Bart-Smith
,
H.
,
2011
, “
Batoid Fishes: Inspiration for the Next Generation of Underwater Robots
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
99
109
.10.4031/MTSJ.45.4.10
3.
Salazar
,
R.
,
Fuentes
,
V.
, and
Abdelkefi
,
A.
,
2018
, “
Classification of Biological and Bioinspired Aquatic Systems: A Review
,”
Ocean Eng.
,
148
, pp.
75
114
.10.1016/j.oceaneng.2017.11.012
4.
Lighthill
,
M.
,
1969
, “
Hydromechanics of Aquatic Animal Propulsion
,”
Annu. Rev. Fluid Mech.
,
1
(
1
), pp.
413
446
.10.1146/annurev.fl.01.010169.002213
5.
Sparenberg
,
J.
,
2002
, “
Survey of the Mathematical Theory of Fish Locomotion
,”
J. Eng. Math.
,
44
(
4
), pp.
395
448
.10.1023/A:1021256500244
6.
Wu
,
T.
,
1961
, “
Swimming of a Waving Plate
,”
Fluid Mech.
,
10
(
3
), pp.
321
344
.10.1017/S0022112061000949
7.
Fish
,
F.
,
Schreiber
,
C.
,
Moored
,
K.
,
Liu
,
G.
,
Dong
,
H.
, and
Bart-Smith
,
H.
,
2016
, “
Hydrodynamic Performance of Aquatic Flapping: Efficiency of Underwater Flight in the Manta
,”
Aerospace
,
3
(
3
), p.
20
.10.3390/aerospace3030020
8.
Liu
,
G.
,
Ren
,
Y.
,
Zhu
,
J.
,
Bart-Smith
,
H.
, and
Dong
,
H.
,
2015
, “
Thrust Producing Mechanisms in Ray-Inspired Underwater Vehicle Propulsion
,”
Theor. Appl. Mech. Lett.
,
5
(
1
), pp.
54
57
.10.1016/j.taml.2014.12.004
9.
Zhan
,
J.
,
Gong
,
Y.
, and
Li
,
T.
,
2014
, “
Effect of Angles of Attack on the Hydrodynamic Forces of Manta Ray
,”
Proceedings of the Eleventh Pacific/Asia Offshore Mechanics Symposium
, Shanghai, China, Oct., pp.
267
272
.
10.
Sharp
,
N.
,
Hagen-Gates
,
V.
,
Hemingway
,
E.
,
Syme
,
M.
,
Via
,
J.
,
Feaster
,
J.
,
Bayandor
,
J.
,
Jung
,
S.
,
Battaglia
,
F.
, and
Kurdila
,
A.
,
2014
, “
Computational Analysis of Undulatory Batoid Motion for Underwater Robotic Propulsion
,”
ASME
Paper No. FEDSM2014.10.1115/FEDSM2014
11.
Liu
,
X.
,
Iwasaki
,
T.
, and
Fish
,
F.
,
2013
, “
Dynamic Modeling and Gait Analysis of Batoid Swimming
,”
American Control Conference
, Washington, DC, June 12–17, pp.
566
571
.10.1109/ACC.2013.6579897
12.
Wei-Shan
,
C.
,
Zhi-Jun
,
W.
,
Jun-Kao
,
L.
,
Sheng-Jun
,
S.
, and
Yang
,
Z.
,
2011
, “
Numerical Simulation of Batoid Locomotion
,”
J. Hydrodyn.
,
23
, pp.
594
600
.10.1016/S1001-6058(10)60154-0
13.
Bottom
,
R. G.
,
Borazjani
,
I.
,
Blevins
,
E. L.
, and
Lauder
,
G. V.
,
2016
, “
Hydrodynamics of Swimming in Stingrays: Numerical Simulations and the Role of the Leading-Edge Vortex
,”
J. Fluid Mech.
,
788
, pp.
407
443
.10.1017/jfm.2015.702
14.
Thekketil
,
N.
,
Sharma
,
A.
, and
Agrawal
,
A.
,
2020
, “
Three-Dimensional Biological Hydrodynamics Study on Various Types of Batoid Fishlike Locomotion
,”
Phys. Rev. Fluids
,
5
(
023101
), pp.
1
26
.10.1103/PhysRevFluids.5.023101
15.
Huang
,
H.
,
Sheng
,
C.
,
Wu
,
J.
,
Wu
,
G.
,
Zhou
,
C.
, and
Wang
,
H.
,
2021
, “
Hydrodynamic Analysis and Motion Simulation of Fin and Propeller Driven Manta Ray Robot
,”
Appl. Ocean. Res.
,
108
, p.
102528
.10.1016/j.apor.2021.102528
16.
Sfakiotakis
,
M.
,
Lane
,
D. M.
, and
Davies
,
J. B. C.
,
1999
, “
Review of Fish Swimming Modes for Aquatic Locomotion
,”
IEEE J. Ocean. Eng.
,
24
(
2
), pp.
237
252
.10.1109/48.757275
17.
Rosemberger
,
L.
,
2001
, “
Pectoral Fin Locomotion in Batoid Fishes: Undulation Versus Oscillation
,”
J. Exp. Biol.
,
204
, pp.
379
394
.10.1242/jeb.204.2.379
18.
Cai
,
Y.
,
Bi
,
S.
,
Li
,
G.
,
Hildre
,
H.
, and
Zhang
,
H.
,
2019
, “
From Natural Complexity to Biomimetic Simplification. the Realization of Bionic Fish Inspired by the Cownose Ray
,”
IEEE Rob. Autom. Mag.
,
26
(
3
), pp.
27
38
.10.1109/MRA.2018.2861985
19.
Cai
,
Y.
,
Bi
,
S.
, and
Zhang
,
L.
,
2010
, “
Design and Implication of a Bionic Pectoral Fin Imitating Cow-Nosed Ray
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Taipei, Taiwan, Oct. 18–22, pp.
3525
3529
.10.1109/IROS.2010.5650804
20.
Poulakis
,
G. R.
,
2013
, “
Reproductive Biology of the Cownose Ray in the Charlotte Harbor Estuarine System, Florida
,”
Mar. Coastal Fish. Dyn., Manage., Ecosyst. Sci.
,
5
(
1
), pp.
159
173
.10.1080/19425120.2013.795509
21.
Russo
,
R.
,
Blemker
,
S.
,
Fish
,
F.
, and
Bart-Smith
,
H.
,
2015
, “
Biomechanical Model of Batoid (Skates and Rays) Pectoral Fins Predicts the Influence of Skeletal Structure on Fin Kinematics: Implications for Bio-Inspired Design
,”
Bioinspiration Biomimetics
,
10
(
4
), p.
046002
.10.1088/1748-3190/10/4/046002
22.
Moored
,
K.
,
Dewey
,
P.
,
Leftwich
,
M.
,
Bart-Smith
,
H.
, and
Smits
,
A.
,
2011
, “
Bioinspired Propulsion Mechanisms Based on Manta Ray Locomotion
,”
Mar. Technol. Soc. J.
,
45
(
4
), pp.
110
118
.10.4031/MTSJ.45.4.3
23.
Shi
,
G.
,
Xiao
,
Q.
,
Zhu
,
Q.
, and
Liao
,
W.
,
2019
, “
Fluid-Structure Interaction Modeling on a 3d Ray-Strengthened Caudal Fin
,”
Bioinspiration Biomimetics
,
14
(
3
), p.
036012
.10.1088/1748-3190/ab0fbe
24.
Newmark
,
N.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
3
), pp.
67
94
.10.1061/JMCEA3.0000098
25.
Gazzola
,
M.
,
Argentina
,
M.
, and
Mahadevan
,
L.
,
2014
, “
Scaling Macroscopic Aquatic Locomotion
,”
Nat. Phys.
,
10
(
10
), pp.
758
761
.10.1038/nphys3078
26.
Eloy
,
C.
,
2012
, “
Optimal Strouhal Number for Swimming Animals
,”
J. Fluids Struct.
,
30
, pp.
205
218
.10.1016/j.jfluidstructs.2012.02.008
27.
Siegel
,
S.
,
Seidel
,
J.
,
Cohen
,
K.
, and
McLaughlin
,
T.
,
2007
, “
A Cycloidal Propeller Using Dynamic Lift
,”
AIAA
Paper No. 2007-4232. 10.2514/6.2007-4232
28.
Anderson
,
J. M.
,
Streitlien
,
K.
,
Barrett
,
D. S.
, and
Triantafyllou
,
M. S.
,
1998
, “
Oscillating Foils of High Propulsive Efficiency
,”
J. Fluid Mech.
,
360
, pp.
41
72
.10.1017/S0022112097008392
29.
Schnipper
,
T.
,
Andersen
,
A.
, and
Bohr
,
T.
,
2009
, “
Vortex Wakes of a Flapping Foil
,”
J. Fluid Mech.
,
633
, pp.
411
423
.10.1017/S0022112009007964
30.
Clark
,
R.
, and
Smits
,
A.
,
2006
, “
Thrust Production and Wake Structure of a Batoid-Inspired Oscillating Fin
,”
J. Fluid Mech.
,
562
, pp.
415
429
.10.1017/S0022112006001297
31.
Dewey
,
P. A.
,
Carriou
,
A.
, and
Smits
,
A.
,
2012
, “
On the Relationship Between Efficiency and Wake Structure of a Batoid-Inspired Oscillating Fin
,”
J. Fluid Mech.
,
691
, pp.
245
266
.10.1017/jfm.2011.472
32.
Borazjani
,
I.
, and
Daghooghi
,
M.
,
2013
, “
The Fish Tail Motion Forms an Attached Leading Edge Vortex
,”
Proc. R. Soc. B
,
280
, p. 20122071.10.1098/rspb.2012.2071
33.
Lu
,
H.
,
Yeo
,
K. S.
, and
Chew
,
C.-M.
,
2018
, “
Effect of Pectoral Fin Kinematics on Manta Ray Propulsion
,”
Mod. Phys. Lett. B
,
32
(
12n13
), p.
1840025
.10.1142/S0217984918400250
34.
Maertens
,
A.
,
Triantafyllou
,
M.
, and
Yue
,
D.
,
2015
, “
Efficiency of Fish Propulsion
,”
Bioinspiration Biomimetics
,
10
(
4
), p.
046013
.10.1088/1748-3190/10/4/046013
35.
Bale
,
R.
,
Hao
,
M.
,
Bhalla
,
A.
, and
Patankar
,
N.
,
2014
, “
Energy Efficiency and Allometry of Movement of Swimming and Flying Animals
,”
Proc. Natl. Acad. Sci.
,
111
(
21
), pp.
7517
7521
.10.1073/pnas.1310544111
36.
Eldredge
,
J. D.
, and
Jones
,
A. R.
,
2019
, “
Leading-Edge Vortices: Mechanics and Modeling
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
75
104
.10.1146/annurev-fluid-010518-040334
37.
Taylor
,
G.
,
2018
, “
Simple Scaling Law Predicts Peak Efficiency in Oscillatory Propulsion
,”
PNAS
,
115
(
32
), pp.
8063
8065
.10.1073/pnas.1809769115
You do not currently have access to this content.