Abstract

Analytical formulas for laminar water hammer in horizontal pipes were extended and simplified into a compact mathematical form based on dimensionless parameters: dimensionless time, water hammer number, etc. Detailed treatment of turbulent water hammer analytical solutions is beyond the scope of this paper. In the Muto and Takahashi solution, novel Laplace and time domain formulas for flow velocity and wall shear stress were developed. A series of comparative studies of unified analytical solutions with numerical solutions and the results of measurements were carried out. The study shows that models that account for the frequency-dependent nature of hydraulic resistance agree very well with experimental results over a wide range of water hammer numbers Wh, particularly when Wh ≤ 0.1.

References

1.
Leishear
,
R.
,
2020
, “
Water Hammer Causes Water Mains Breaks
,”
ASME J. Pressure Vessel Technol.
,
142
(
2
), p.
021402
.10.1115/1.4044423
2.
Bettaieb
,
N.
, and
Taieb
,
E. H.
,
2020
, “
Assessment of Failure Modes by Water Hammer and Investigation of Convenient Control Measures
,”
J. Pipeline Syst. Eng. Pract.
,
11
(
2
), p.
04020006
.10.1061/(ASCE)PS.1949-1204.0000446
3.
Adamkowski
,
A.
,
Lewandowski
,
M.
, and
Lewandowski
,
S.
,
2021
, “
Fatigue Life Analysis of Hydropower Pipelines Using the Analytical Model of Stress Concentration in Welded Joints With Angular Distortions and Considering the Influence of Water Hammer Damping
,”
Thin-Walled Struct.
,
159
, p.
107350
.10.1016/j.tws.2020.107350
4.
Gomes de Freitas
,
A.
,
Furlan de Oliveira
,
V.
,
Lima
,
Y. O.
,
Borges dos Santos
,
R.
, and
Martinez
,
L. A.
,
2021
, “
Energy Efficiency in Pneumatic Conveying: Performance Analysis of an Alternative Blow Tank
,”
Particulate Sci. Technol.
,
39
(
7
), pp.
868
876
.10.1080/02726351.2020.1850574
5.
Bagaragaza
,
R.
,
Zhang
,
J.
,
Yu
,
X. D.
, and
Dusabemariya
,
C.
,
2021
, “
Assessment and Performance Evaluation of Water Hammer in Hydroelectric Plants With Hydropneumatic Tank and Pressure Regulating Valve
,”
ASME J. Pressure Vessel Technol.
,
143
(
4
), p.
041401
.10.1115/1.4049148
6.
de Freitas
,
A. G.
,
de Oliveira
,
V. F.
,
dos Santos
,
R. B.
,
Riascos
,
L. A. M.
, and
Zou
,
R.
,
2022
, “
Optimization Method for Pneumatic Conveying Parameters and Energy Consumption Performance Analysis of a Compact Blow Tank
,”
ASME J. Pressure Vessel Technol.
,
144
(
6
), p.
064504
.10.1115/1.4055111
7.
Joukowsky
,
N.
,
1900
, “
Über den Hydraulischen Stoss in Wasserleitungsröhren
,”
Mem. L'academie Imp. Sci. St.-Petersbourg
,
9
(
5
), pp.
1
71
.https://www.dbc.wroc.pl/dlibra/publication/142937/edition/74236/content?format_id=2
8.
Allievi
,
L.
,
1902
, “
Teoria Generale Del Moto Perturbato Dell'acqua Nei Tubi in Pressione (Colpo D'ariete)
,”
Ann. Della Soc. Ing. Arch. Ital.
,
17
(
5
), pp.
285
325
.
9.
Rich
,
G. R.
,
1945
, “
Water Hammer Analysis in the Laplace-Mellin Transformation
,”
Trans. ASME
,
67
(
5
), pp.
361
368
.10.1115/1.4018265
10.
Wood
,
F. M.
,
1937
, “
The Application of Heaviside's Operational Calculus to the Solution of Problems in Water Hammer
,”
Trans. ASME
,
59
(
8
), pp.
707
713
.10.1115/1.4020580
11.
Goodson
,
R. E.
, and
Leonard
,
R. G.
,
1972
, “
A Survey of Modeling Techniques for Fluid Line Transients
,”
ASME J. Basic Eng.
,
94
(
2
), pp.
474
482
.10.1115/1.3425453
12.
Urbanowicz
,
K.
,
Bergant
,
A.
,
Karadžić
,
U.
,
Jing
,
H.
, and
Kodura
,
A.
,
2021
, “
Numerical Investigation of the Cavitational Flow for Constant Water Hammer Number
,”
J. Phys. Conf. Ser.
,
1736
(
1
), p.
012040
.10.1088/1742-6596/1736/1/012040
13.
Brown
,
F. T.
,
1962
, “
The Transient Response of Fluid Lines
,”
ASME J. Fluids Eng.
,
84
(
4
), pp.
547
553
.10.1115/1.3658705
14.
Holmboe
,
E. L.
,
1964
, “
Viscous Distortion in Wave Propagation as Applied to Waterhammer and Short Pulses
,” Doctoral thesis,
Carnegie Institute of Technology
, Pittsburgh, PA.
15.
Holmboe
,
E. L.
, and
Rouleau
,
W. T.
,
1967
, “
The Effect of Viscous Shear on Transients in Liquid Lines
,”
ASME J. Basic Eng.
,
89
(
1
), pp.
174
180
.10.1115/1.3609549
16.
Brown
,
F. T.
, and
Nelson
,
S. E.
,
1965
, “
Step Responses of Liquid Lines With Frequency-Dependent Effects of Viscosity
,”
ASME J. Fluids Eng.
,
87
(
2
), pp.
504
510
.10.1115/1.3650586
17.
Iberall
,
A. S.
,
1950
, “
Attenuation of Oscillatory Pressures in Instrument Lines
,”
J. Res. Natl. Bureau Stand.
,
45
(
1
), pp.
85
108
.10.6028/jres.045.008
18.
Nichols
,
N. B.
,
1962
, “
The Linear Properties of Pneumatic Transmission Lines
,”
Trans. Instrum. Soc. Am.
,
1
, pp.
5
14
.
19.
Zielke
,
W.
,
1966
, “
Frequency-Dependent Friction in Transient Pipe Flow
,” Doctoral thesis,
University of Michigan
, Ann Arbor, MI.
20.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
21.
Brühl
,
M.
,
2022
, “
Analytical Solution for Laminar Water Hammer With Frequency-Dependent Friction
,”
ASME J. Fluids Eng.
,
144
(
11
), p.
111302
. 10.1115/1.4054891
22.
Urbanowicz
,
K.
,
2018
, “
Fast and Accurate Modelling of Frictional Transient Pipe Flow
,”
Z. Angew. Math. Mech.
,
98
(
5
), pp.
802
823
.10.1002/zamm.201600246
23.
Gerlach
,
C. R.
,
1966
, “
The Dynamics of Viscous Fluid Transmission-Lines With Particular Emphasis on Higher Mode Propagation
,” Doctoral Thesis,
Oklahoma State University
, Stillwater, OK.
24.
Gerlach
,
C. R.
, and
Parker
,
J. D.
,
1967
, “
Wave Propagation in Viscous Fluid Lines Including Higher Mode Effects
,”
ASME J. Basic Eng.
,
89
(
4
), pp.
782
788
.10.1115/1.3609707
25.
Scarton
,
H. A.
, and
Rouleau
,
W. T.
,
1973
, “
Axisymmetric Waves in Compressible Newtonian Liquids Contained in Rigid Tubes: Steady-Periodic Mode Shapes and Dispersion by the Method of Eigenvalleys
,”
J. Fluid Mech.
,
58
(
3
), pp.
595
621
.10.1017/S0022112073002351
26.
Muto
,
T.
, and
Takahashi
,
K.
,
1985
, “
Transient Responses of Fluid Lines (Step Responses of Single Pipeline and Series Pipelines
,”
Bull. JSME
,
28
(
244
), pp.
2325
2331
.10.1299/jsme1958.28.2325
27.
Sobey
,
R. J.
,
2004
, “
Analytical Solutions for Unsteady Pipe Flow
,”
J. Hydroinf.
,
6
(
3
), pp.
187
207
.10.2166/hydro.2004.0015
28.
Jović
,
V.
,
2013
,
Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks
,
Wiley
, Chichester, UK.
29.
Mei
,
C. C.
, and
Jing
,
H.
,
2016
, “
Pressure and Wall Shear Stress in Blood Hammer—Analytical Theory
,”
Math. Biosci.
,
280
, pp.
62
70
.10.1016/j.mbs.2016.07.007
30.
Mei
,
C. C.
, and
Jing
,
H.
,
2018
, “
Effects of Thin Plaque on Blood Hammer—An Asymptotic Theory
,”
Eur. J. Mech./B Fluids
,
69
, pp.
62
75
.10.1016/j.euromechflu.2018.01.004
31.
García García
,
F. J.
, and
Alvariño
,
P. F.
,
2019
, “
On an Analytical Explanation of the Phenomena Observed in Accelerated Turbulent Pipe Flow
,”
J. Fluid Mech
,
881
, pp.
420
461
.10.1017/jfm.2019.733
32.
García García
,
F. J.
, and
Alvariño
,
P. F.
,
2019
, “
On an Analytic Solution for General Unsteady/Transient Turbulent Pipe Flow and Starting Turbulent Flow
,”
Eur. J. Mech./B Fluids
,
74
, pp.
200
210
.10.1016/j.euromechflu.2018.11.014
33.
Ham
,
A. A.
,
1982
, “
On the Dynamics of Hydraulic Lines Supplying Servosystems
,” Doctoral Thesis,
TU Delft
, Delft, The Netherlands.
34.
Hullender
,
D. A.
,
2016
, “
Alternative Approach for Modeling Transients in Smooth Pipe With Low Turbulent Flow
,”
ASME J. Fluids Eng.
,
138
(
12
), p.
12120243
.10.1115/1.4034097
35.
Hullender
,
D. A.
,
2018
, “
Water Hammer Peak Pressures and Decay Rates of Transients in Smooth Lines With Turbulent Flow
,”
ASME J. Fluids Eng.
,
140
(
6
), p.
061204
.10.1115/1.4039120
36.
Wongputorn
,
P.
,
Hullender
,
D.
, and
Woods
,
R. L.
,
2003
, “
Rational Polynomial Transfer Function Approximations for Fluid Transients in Lines
,”
ASME
Paper No. FEDSM2003-45247.10.1115/FEDSM2003-45247
37.
Wongputorn
,
P.
,
Hullender
,
D.
,
Woods
,
R. L.
, and
King
,
J.
,
2005
, “
Application of MATLAB Functions for Time Domain Simulation of Systems With Lines With Fluid Transients
,”
ASME J. Fluids Eng.
,
127
(
1
), pp.
177
182
.10.1115/1.1852488
38.
Jing
,
H.
,
Zhang
,
D.
, and
Li
,
G.
,
2018
, “
Pressure Variations of Fluid Transients in a Pressurized Pipeline
,”
Fluid Dyn. Res.
,
50
(
4
), p.
045514
.10.1088/1873-7005/aacde2
39.
Riemann
,
B.
,
1860
, “
Über die Fortpflanzung Ebener Luftwellen von Endlicher Schwingungsweite
,”
Abh. Königlichen Ges. Wiss. Göttingen
,
8
, pp.
43
65
.https://eudml.org/doc/135717
40.
Urbanowicz
,
K.
,
Firkowski
,
M.
, and
Bergant
,
A.
,
2018
, “
Comparing Analytical Solutions for Unsteady Laminar Pipe Flow
,”
Proceedings of 13th International Conference Pressure Surges
, Bordeaux, France, Nov. 14–16, pp.
283
303
.https://www.researchgate.net/publication/329759824_Comparing_analytical_solutions_for_unsteady_laminar_pipe_flow
41.
Sobey
,
R. J.
,
2002
, “
Analytical Solution of Non-Homogeneous Wave Equation
,”
Coastal Eng. J.
,
44
(
1
), pp.
1
23
.10.1142/S057856340200041X
42.
Chaudhry
,
M. H.
,
2014
,
Applied Hydraulic Transients
,
Springer
,
New York
.
43.
Tijsseling
,
A. S.
, and
Bergant
,
A.
, “
Meshless Computation of Water Hammer, Scientific Bulletin of the “Politehnica” University of Timişoara
,”
Trans. Mech.
,
52
(
66
), pp.
65
76
.
44.
Urbanowicz
,
K.
,
Bergant
,
A.
,
Stosiak
,
M.
,
Deptuła
,
A.
,
Karpenko
,
M.
,
Kubrak
,
M.
, and
Kodura
,
A.
,
2022
, “
Water Hammer Simulation Using Simplified Convolution-Based Unsteady Friction Model
,”
Water
,
14
(
19
), p.
3151
.10.3390/w14193151
45.
Vardy
,
A. E.
, and
Brown
,
J. M. B.
,
2010
, “
Evaluation of Unsteady Wall Shear Stress by Zielke's Method
,”
J. Hydraul. Eng.
,
136
(
7
), pp.
453
456
.10.1061/(ASCE)HY.1943-7900.0000192
46.
Bergant
,
A.
,
Simpson
,
A. R.
, and
Vítkovsk
ý,
J.
,
2001
, “
Developments in Unsteady Pipe Flow Friction Modelling
,”
J. Hydraul. Res.
,
39
(
3
), pp.
249
257
.10.1080/00221680109499828
47.
Adamkowski
,
A.
, and
Lewandowski
,
M.
,
2006
, “
Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation
,”
ASME J. Fluids Eng.
,
128
(
6
), pp.
1351
1363
.10.1115/1.2354521
48.
Urbanowicz
,
K.
,
Stosiak
,
M.
,
Towarnicki
,
K.
, and
Bergant
,
A.
,
2021
, “
Theoretical and Experimental Investigations of Transient Flow in Oil-Hydraulic Small-Diameter Pipe System
,”
Eng. Failure Anal.
,
128
, p.
105607
.10.1016/j.engfailanal.2021.105607
49.
Urbanowicz
,
K.
,
2017
, “
Computational Compliance Criteria in Water Hammer Modelling
,”
E3S Web Conf.
,
19
, p.
03021
.10.1051/e3sconf/20171903021
50.
Johnston
,
N.
,
2012
, “
The Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
J. Syst. Control Eng.
,
226
(
5
), pp.
586
597
.
51.
Liou
,
J. C. P.
,
2016
, “
Understanding Line Packing in Frictional Water Hammer
,”
ASME J. Fluids Eng.
,
138
(
8
), p.
081303
.10.1115/1.4033368
You do not currently have access to this content.