Abstract

The effects of blockage ratio (BR) on turbulent flows around square cylinders at moderate Reynolds numbers are investigated using a time-resolved particle image velocimetry (TR-PIV). The blockage ratios range from 2.5% to 15%, and the Reynolds numbers based on the freestream velocity and cylinder thickness are 3000, 7500, and 15,000. The flow dynamics are examined in terms of the mean flow, Reynolds stresses, frequency spectra, reverse flow area, and proper orthogonal decomposition (POD). The results show that the wake characteristics are nearly independent of the Reynolds number and blockage ratio. Spectral analyses of the velocity fluctuations demonstrate that the von Kármán (VK) shedding frequency is independent of the Reynolds number and blockage ratio, however, the Kelvin–Helmholtz (KH) frequencies increase with increasing Reynolds number and blockage ratio. The probability density function of the reverse flow area shows unimodal and bimodal distributions for the lower (BR ≤ 5%) and higher (BR ≥ 10%) blockage ratios, respectively, and the mean reverse flow area and its standard deviation decrease with increasing blockage ratio. The results also show that the contributions from the first POD mode pair to the total energy increase with blockage ratio but independent of the Reynolds number. The POD mode coefficients show significant cycle-to-cycle variation at lower blockage ratios, suggesting that the energetic structures are comparatively less organized at lower blockage ratios. The spectra of the velocity fluctuations, reverse flow area, and POD mode coefficients all show dominant peaks at the fundamental shedding frequency.

References

1.
Okajima
,
A.
,
1982
, “
Strouhal Numbers of Rectangular Cylinders
,”
J. Fluid Mech.
,
123
, pp.
379
398
.10.1017/S0022112082003115
2.
Igarashi
,
T.
,
1985
, “
Characteristics of the Flow Around Rectangular Cylinders: The Case of the Angle of Attack 0 Deg
,”
Bull. JSME
,
28
(
242
), pp.
1690
1696
.10.1299/jsme1958.28.1690
3.
Lyn
,
D. A.
,
Einav
,
S.
,
Rodi
,
W.
, and
Park
,
J. H.
,
1995
, “
A laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder
,”
J. Fluids Mech.
,
304
, pp.
285
319
.10.1017/S0022112095004435
4.
Lander
,
D. C.
,
Letchford
,
C. W.
,
Amitay
,
M.
, and
Kopp
,
G. A.
,
2016
, “
Influence of the Bluff Body Shear Layers on the Wake of a Square Prism in a Turbulent Flow
,”
Phys. Rev. Fluids
,
1
(
4
), p.
044406
.10.1103/PhysRevFluids.1.044406
5.
Nakagawa
,
S.
,
Nitta
,
K.
, and
Senda
,
M.
,
1999
, “
An Experimental Study on Unsteady Turbulent Near Wake of a Rectangular Cylinder in Channel Flow
,”
Exp. Fluids
,
27
(
3
), pp.
284
294
.10.1007/s003480050353
6.
Trias
,
F. X.
,
Gorobets
,
A.
, and
Oliva
,
A.
,
2015
, “
Turbulent Flow Around a Square Cylinder at Reynolds Number 22,000: A DNS Study
,”
Comput. Fluids
,
123
, pp.
87
98
.10.1016/j.compfluid.2015.09.013
7.
Portela
,
F. A.
,
Papadakis
,
G.
, and
Vassilicos
,
J. C.
,
2017
, “
The Turbulence Cascade in the Near Wake of a Square Prism
,”
J. Fluid Mech.
,
825
, pp.
315
352
.10.1017/jfm.2017.390
8.
Lander
,
D. C.
,
Moore
,
D. M.
,
Letchford
,
C. W.
, and
Amitay
,
M.
,
2018
, “
Scaling of Square-Prism Shear Layers
,”
J. Fluid Mech.
,
849
, pp.
1096
1119
.10.1017/jfm.2018.443
9.
Bai
,
H.
, and
Alam
,
M. M.
,
2018
, “
Dependence of Square Cylinder Wake on Reynolds Number
,”
Phys. Fluids
,
30
(
1
), p.
015102
.10.1063/1.4996945
10.
Kumahor
,
S.
, and
Tachie
,
M. F.
,
2022
, “
Turbulent Flow Around Rectangular Cylinders With Different Streamwise Aspect Ratios
,”
ASME J. Fluids Eng.
,
144
(
5
), p.
051304
.10.1115/1.4052633
11.
Moore
,
D. M.
,
Letchford
,
C. W.
, and
Amitay
,
M.
,
2019
, “
Energetic Scales in a Bluff Body Shear Layer
,”
J. Fluid Mech.
,
875
, pp.
543
575
.10.1017/jfm.2019.480
12.
Durao
,
D. F.
,
Heitor
,
M. V.
, and
Pereira
,
J. C.
,
1988
, “
Measurements of Turbulent and Periodic Flows Around a Square Cross-Section Cylinder
,”
Exp. Fluids
,
6
(
5
), pp.
298
304
.10.1007/BF00538820
13.
Griffin
,
O. M.
,
1995
, “
A Note on Bluff Body Vortex Formation
,”
J. Fluid Mech.
,
284
, pp.
217
224
.10.1017/S0022112095000322
14.
Liu
,
M.
,
Kumahor
,
S.
,
Audette
,
L.
, and
Tachie
,
M. F.
,
2022
, “
Investigations of Aspect Ratio Effects on Wake Dynamics of Rectangular Cylinders
,”
ASME
Paper No. FEDSM2022-87654. 10.1115/FEDSM2022-87654
15.
Davis
,
R. W.
,
Moore
,
E. F.
, and
Purtell
,
L. P.
,
1984
, “
A Numerical-Experimental Study of Confined Flow Around Rectangular Cylinders
,”
Phys. Fluids
,
27
(
1
), pp.
46
59
.10.1063/1.864486
16.
Turki
,
S.
,
Abbassi
,
H.
, and
Nasrallah
,
S. B.
,
2003
, “
Effect of the Blockage Ratio on the Flow in a Channel With a Built-in Square Cylinder
,”
Comput. Mech.
,
33
(
1
), pp.
22
29
.10.1007/s00466-003-0496-2
17.
Patil
,
P. P.
, and
Tiwari
,
S.
,
2008
, “
Effect of Blockage Ratio on Wake Transition for Flow Past Square Cylinder
,”
Fluid Dyn. Res.
,
40
(
11–12
), pp.
753
778
.10.1016/j.fluiddyn.2008.04.001
18.
Shadaram
,
A.
,
Fard
,
M. A.
, and
Rostamy
,
N.
,
2008
, “
Experimental Study of Near Wake Flow Behind a Rectangular Cylinder
,”
Am. J. Appl. Sci.
,
5
(
8
), pp.
917
926
.10.3844/ajassp.2008.917.926
19.
Erturk
,
E.
, and
Gokcol
,
O.
,
2018
, “
Effect of Blockage Ratio on Steady Incompressible 2-D Flow Around a Square Cylinder Confined in a Channel
,”
Int. J. Mech. Eng. Technol.
,
9
(
13
), pp. 477–487.https://www.researchgate.net/publication/331984413_Effect_of_Blockage_Ratio_on_Steady_Incompressible_2-D_Flow_Around_a_Square_Cylinder_Confined_in_a_Channel
20.
Brun
,
C.
,
Aubrun
,
S.
,
Goossens
,
T.
, and
Ravier
,
P.
,
2008
, “
Coherent Structures and Their Frequency Signature in the Separated Shear Layer on the Sides of a Square Cylinder
,”
Flow, Turbulent Combust.
,
81
(
1–2
), pp.
97
114
.10.1007/s10494-008-9152-4
21.
Prasad
,
A.
, and
Williamson
,
C.
,
1997
, “
The Instability of the Shear Layer Separating From a Bluff Body
,”
J. Fluid Mech.
,
333
, pp.
375
402
.10.1017/S0022112096004326
22.
Rajagopalan
,
S.
, and
Antonia
,
R. A.
,
2005
, “
Flow Around a Circular Cylinder Structure of the Near Wake Shear Layer
,”
Exp. Fluids
,
38
(
4
), pp.
393
402
.10.1007/s00348-004-0913-0
23.
Khabbouchi
,
I.
,
Fellouah
,
H.
,
Ferchichi
,
M.
, and
Guellouz
,
M. S.
,
2014
, “
Effects of Free-Stream Turbulence and Reynolds Number on the Separated Shear Layer From a Circular Cylinder
,”
J. Wind Eng. Ind. Aerodyn.
,
135
, pp.
46
56
.10.1016/j.jweia.2014.10.005
24.
Essel
,
E. E.
,
Tachie
,
M. F.
, and
Balachandar
,
R.
,
2021
, “
Time-Resolved Wake Dynamics of Finite Wall-Mounted Circular Cylinders Submerged in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
917
, p. A8.10.1017/jfm.2021.265
25.
Pearson
,
D. S.
,
Goulart
,
P. J.
, and
Ganapathisubramani
,
B.
,
2013
, “
Turbulent Separation Upstream of a Forward-Facing Step
,”
J. Fluid Mech.
,
724
, pp.
284
304
.10.1017/jfm.2013.113
26.
Fang
,
X.
,
Tachie
,
M. F.
, and
Bergstrom
,
D. J.
,
2021
, “
Direct Numerical Simulation of Turbulent Flow Separation Induced by a Forward-Facing Step
,”
Int. J. Heat Fluid Flow
,
87
, p.
108753
.10.1016/j.ijheatfluidflow.2020.108753
27.
Aleyasin
,
S. S.
,
Tachie
,
M. F.
, and
Balachandar
,
R.
,
2021
, “
Characteristics of Flow Past Elongated Bluff Bodies With Underbody Gaps Due to Varying Inflow Turbulence
,”
Phys. Fluids
,
33
(
12
), p.
125106
.10.1063/5.0072390
28.
Sagharichi
,
A.
,
Aleyasin
,
S. S.
, and
Tachie
,
M. F.
,
2023
, “
Turbulent Separations Around a Slanted Back Ahmed Body With Square and Rounded Leading Edge
,”
Phys. Fluids
,
35
(
4
), p.
045129
.10.1063/5.0143457
29.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry
, 3rd ed.,
Springer-Verlag
,
Berlin, Heidelberg
.
30.
Pope
,
S. B.
,
2000
, “
Turbulent Flows
,” Cambridge University Press, Cambridge, UK.
31.
Samimy
,
M.
, and
Lele
,
S. K.
,
1991
, “
Motion of Particles With Inertia in a Compressible Free Shear Layer
,”
Phys. Fluids A
,
3
(
8
), pp.
1915
1923
.10.1063/1.857921
32.
Sciacchitano
,
A.
, and
Wieneke
,
B.
,
2016
, “
PIV Uncertainty Propagation
,”
Meas. Sci. Technol.
,
27
(
8
), p.
084006
.10.1088/0957-0233/27/8/084006
33.
van Oudheusden
,
B. W.
,
Scarano
,
F.
,
Van Hinsberg
,
N. P.
, and
Watt
,
D. W.
,
2005
, “
Phase-Resolved Characterization of Vortex Shedding in the Near Wake of a Square-Section Cylinder at Incidence
,”
Exp. Fluids
,
39
(
1
), pp.
86
98
.10.1007/s00348-005-0985-5
34.
Minguez
,
M.
,
Brun
,
C.
,
Pasquetti
,
R.
, and
Serre
,
E.
,
2011
, “
Experimental and High-Order Les Analysis of the Flow in Near-Wall Region of a Square Cylinder
,”
Int. J. Heat Fluid Flow
,
32
(
3
), pp.
558
566
.10.1016/j.ijheatfluidflow.2011.03.009
35.
Kumahor
,
S.
, and
Tachie
,
M. F.
,
2023
, “
Effects of Streamwise Aspect Ratio on Spatio-Temporal Characteristics of Rectangular Cylinders
,”
Int. J. Heat Fluid Flow
,
101
, p.
109133
.10.1016/j.ijheatfluidflow.2023.109133
36.
Fang
,
X.
, and
Tachie
,
M. F.
,
2020
, “
Spatio-Temporal Dynamics of Flow Separation Induced by a Forward-Facing Step Submerged in a Thick Turbulent Boundary Layer
,”
J. Fluid Mech.
,
892
, p.
A40
.10.1017/jfm.2020.209
37.
Fang
,
X.
, and
Tachie
,
M. F.
,
2019
, “
On the Unsteady Characteristics of Turbulent Separations Over a Forward-Backward-Facing Step
,”
J. Fluid Mech.
,
863
, pp.
994
1030
.10.1017/jfm.2018.962
38.
Riches
,
G.
,
Martinuzzi
,
R.
, and
Morton
,
C.
,
2018
, “
Proper Orthogonal Decomposition Analysis of a Circular Cylinder Undergoing Vortex-Induced Vibrations
,”
Phys. Fluids
,
30
(
10
), p.
105103
.10.1063/1.5046090
39.
Peng
,
D.
,
Wang
,
S.
, and
Liu
,
Y.
,
2016
, “
Fast PSP Measurements of Wall-Pressure Fluctuations in Low-Speed Flows: Improvements Using Proper Orthogonal Decomposition
,”
Exp. Fluids
,
57
, p.
45
.10.1007/s00348-016-2130-z
40.
Essel
,
E. E.
,
Balachandar
,
R.
, and
Tachie
,
M. F.
,
2023
, “
Effects of Sheltering on the Unsteady Wake Dynamics of Tandem Cylinders Mounted in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
954
, p. A40.10.1017/jfm.2022.1029
41.
Thacker
,
A.
,
Aubrun
,
S.
,
Leroy
,
A.
, and
Devinant
,
P.
,
2013
, “
Experimental Characterization of Flow Unsteadiness in the Centerline Plane of an Ahmed Body Rear Slant
,”
Exp. Fluids
,
54
(
3
), p. 1479.10.1007/s00348-013-1479-5
42.
Podvin
,
B.
,
Pellerin
,
S.
,
Fraigneau
,
Y.
,
Evrard
,
A.
, and
Cadot
,
O.
,
2020
, “
Proper Orthogonal Decomposition Analysis and Modelling of the Wake Deviation Behind a Squareback Ahmed Body
,”
Phys. Rev. Fluids
,
5
(
6
), p.
064612
.10.1103/PhysRevFluids.5.064612
43.
He
,
G. S.
,
Li
,
N.
, and
Wang
,
J. J.
,
2014
, “
Drag Reduction of Square Cylinders With Cut-Corners at the Front Edges
,”
Exp. Fluids
,
55
(
6
), p. 1745.10.1007/s00348-014-1745-1
44.
Mohebi
,
M.
,
Du Plessix
,
P.
,
Martinuzzi
,
R. J.
, and
Wood
,
D. H.
,
2017
, “
Effect of Thickness-to-Chord Ratio on the Wake of Two-Dimensional Rectangular Cylinders
,”
Phys. Rev. Fluids
,
2
(
6
), p.
064702
.10.1103/PhysRevFluids.2.064702
45.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. Part I, II and III
,”
Q. App. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
You do not currently have access to this content.