Abstract

Plug nozzles are frequently regarded as a strong contender for futuristic single-stage-to-orbit (SSTO) space missions due to their inherent altitude-compensating properties. Optimizing the design of these nozzles to achieve peak performance during the initial ascent phase is of pre-eminent importance. The current research aims to deepen our comprehension of the unsteady behavior of plug nozzles during this ascent phase, commonly referred to as the overexpanded flow regime. It utilizes a full-spike plug nozzle and employs a finite volume-based solver within the OpenFOAM framework to investigate flow features across nozzle pressure ratios (NPRs) ranging from 3 to 8. Additionally, the Ffowcs Williams Hawkings (FW-H) analogy is employed to assess the influence of acoustics in the nozzle's flow field at different NPRs. Spectral analysis and flow visualizations are employed to study the frequency content and the respective flow features of the system. It is observed that the flow exhibits separation beyond NPR 4 and is highly unsteady at NPR 6, which is inferred from the prominence of the recirculation bubble. However, beyond NPR 6, the flow tends to reattach the plug surface, dampening the disturbance.

References

1.
O'Leary
,
R.
, and
Beck
,
J.
,
1992
,
Nozzle Design
,
Spring
, Berlin, Heidelberg.
2.
John
,
J. E.
,
1984
, “
Gas Dynamics
,” Pearson, London, UK.
3.
Anderson
,
J. D.
,
1990
,
Modern Compressible Flow: With Historical Perspective
, McGraw-Hill Education, New York.
4.
Hagemann
,
G.
,
Immich
,
H.
,
Van Nguyen
,
T.
, and
Dumnov
,
G. E.
,
1998
, “
Advanced Rocket Nozzles
,”
J. Propul. Power
,
14
(
5
), pp.
620
634
.10.2514/2.5354
5.
Romine
,
G.
,
1998
, “
Nozzle Flow Separation
,”
AIAA J.
,
36
(
9
), pp.
1618
1625
.10.2514/2.588
6.
Zebiri
,
B.
,
Piquet
,
A.
,
Hadjadj
,
A.
, and
Verma
,
S.
,
2020
, “
Shock-Induced Flow Separation in an Overexpanded Supersonic Planar Nozzle
,”
AIAA J.
,
58
(
5
), pp.
2122
2131
.10.2514/1.J058705
7.
Johnson
,
A. D.
, and
Papamoschou
,
D.
,
2010
, “
Instability of Shock-Induced Nozzle Flow Separation
,”
Phys. Fluids
,
22
(
1
), p.
016102
.10.1063/1.3278523
8.
Onofri
,
M.
,
Calabro
,
M.
,
Hagemann
,
G.
,
Immich
,
H.
,
Sacher
,
P.
,
Nasuti
,
F.
, and
Reijasse
,
P.
,
2002
, “
Plug Nozzles: Summary of Flow Features and Engine Performance-Overview of RTO/AVT WG 10 Subgroup 1
,”
AIAA
Paper No. 2002-0584.10.2514/6.2002-0584
9.
Ito
,
T.
,
Fujii
,
K.
, and
Hayashi
,
A. K.
,
2002
, “
Computations of Axisymmetric Plug-Nozzle Flowfields: Flow Structures and Thrust Performance
,”
J. Propul. Power
,
18
(
2
), pp.
254
260
.10.2514/2.5964
10.
Griffith
,
A.
,
1954
, “
Jet Propulsion Nozzle for Use at Supersonic Jet Velocities
,” U.S. Patent No. 2,683,962.
11.
Scott
,
C.
, and
Rask
,
D.
,
1977
, “
Free Turbulent Shear Layers on Plug Nozzles
,”
ASME J. Fluid Eng.
,
99
(
2
), pp.
301
308
.10.1115/1.3448749
12.
Aukerman
,
C.
,
1991
, “
Plug Nozzles-the Ultimate Customer Driven Propulsion System
,”
AIAA
Paper No. 1991-2208.
10.2514/6.1991-2208
13.
Sutton
,
G. P.
,
2006
,
History of Liquid Propellant Rocket Engines
,
American Institute of Aeronautics and Astronautics, Inc
., Reston, VA.
14.
Chutkey
,
K.
,
Vasudevan
,
B.
, and
Balakrishnan
,
N.
,
2012
, “
Flowfield Analysis of Linear Plug Nozzle
,”
J. Spacecr. Rockets
,
49
(
6
), pp.
1109
1119
.10.2514/1.A32090
15.
Chutkey
,
K.
,
Vasudevan
,
B.
, and
Balakrishnan
,
N.
,
2014
, “
Analysis of Annular Plug Nozzle Flowfield
,”
J. Spacecr. Rockets
,
51
(
2
), pp.
478
490
.10.2514/1.A32617
16.
Khan
,
A.
,
Panthi
,
R.
,
Kumar
,
R.
, and
Ibrahim
,
S. M.
,
2019
, “
Experimental Investigation of the Effect of Extended Cowl on the Flow Field of Planar Plug Nozzles
,”
Aerosp. Sci. Technol.
,
88
, pp.
208
221
.10.1016/j.ast.2019.03.011
17.
Sule
,
W. P.
, and
Mueller
,
T. J.
,
1973
, “
Annular Truncated Plug Nozzle Flowfield and Base Pressure Characteristics
,”
J. Spacecr. Rockets
,
10
(
11
), pp.
689
695
.10.2514/3.61949
18.
Ruf
,
J.
,
McConaughey
,
P.
,
Ruf
,
J.
, and
McConaughey
,
P.
,
1997
, “
The Plume Physics Behind Aerospike Nozzle Altitude Compensation and Slipstream Effect
,”
AIAA
Paper No.
1997
-
3218
.10.2514/6.1997-3218
19.
Wisse
,
M. E.
, and
Bannink
,
W. J.
,
2001
, “
Half Model Restrictions for Linear Plug Nozzle Testing
,”
AIAA J.
,
39
(
11
), pp.
2148
-
2157
.10.2514/2.1211
20.
Verma
,
S.
, and
Viji
,
M.
,
2011
, “
Linear-Plug Flowfield and Base Pressure Development in Freestream Flow
,”
J. Propul. Power
,
27
(
6
), pp.
1247
1258
.10.2514/1.B34195
21.
Calabro
,
M.
,
Hagemann
,
G.
,
Onofri
,
M.
,
Nasuti
,
F.
, and
Reijasse
,
P.
,
2002
,
Plug Nozzles: Summary of Flow Features and Engine Performance
,
Tiré à part - National Office for Aerospace Studies and Research
, Palaiseau, France.
22.
Verma
,
S. B.
,
2009
, “
Performance Characteristics of an Annular Conical Aerospike Nozzle With Freestream Effect
,”
J. Propul. Power
,
25
(
3
), pp.
783
791
.10.2514/1.40302
23.
Östlund
,
J.
, and
Muhammad-Klingmann
,
B.
,
2005
, “
Supersonic Flow Separation With Application to Rocket Engine Nozzles
,”
ASME Appl. Mech. Rev.
,
58
(
3
), pp.
143
177
.10.1115/1.1894402
24.
Gupta
,
P.
,
Rao
,
S.
, and
Kumar
,
P.
,
2019
, “
Experimental Investigations on Mixing Characteristics in the Critical Regime of a Low-Area Ratio Supersonic Ejector
,”
Phys. Fluids
,
31
(
2
), p.
026101
.10.1063/1.5078433
25.
Karthick
,
S.
,
Rao
,
S.
,
Jagadeesh
,
G.
, and
Reddy
,
K.
,
2016
, “
Parametric Experimental Studies on Mixing Characteristics Within a Low Area Ratio Rectangular Supersonic Gaseous Ejector
,”
Phys. Fluids
,
28
(
7
), p.
076101
.10.1063/1.4954669
26.
Frey
,
M.
, and
Hagemann
,
G.
,
1999
, “
Flow Separation and Side-Loads in Rocket Nozzles
,”
AIAA
Paper No.
1999
-
2815
.10.2514/6.1999-2815
27.
Olson
,
B. J.
, and
Lele
,
S. K.
,
2013
, “
A Mechanism for Unsteady Separation in Overexpanded Nozzle Flow
,”
Phys. Fluids
,
25
(
11
), p.
110809
.10.1063/1.4819349
28.
Nakano
,
M.
,
Outa
,
E.
, and
Tajima
,
K.
,
1988
, “
Noise and Vibration Related to the Patterns of Supersonic Annular Flow in a Pressure Reducing Gas Valve
,”
ASME J. Fluids Eng.
,
110
(
1
), pp.
55
61
.10.1115/1.3243511
29.
Chutkey
,
K.
,
Viji
,
M.
, and
Verma
,
S. B.
,
2017
, “
Effect of Clustering on Linear Plug Nozzle Flow Field for Overexpanded Internal Jet
,”
Shock Waves
,
27
(
4
), pp.
623
633
.10.1007/s00193-017-0707-y
30.
Menter
,
F.
,
Kuntz
,
M.
, and
Bender
,
R.
,
2003
, “
A Scale-Adaptive Simulation Model for Turbulent Flow Predictions
,”
AIAA
Paper No.
2003
-
767
.10.2514/6.2003-767
31.
Wu
,
J.
,
Lim
,
H.
,
Wei
,
X.
,
New
,
T.
, and
Cui
,
Y.
,
2019
, “
Flow Characterization of Supersonic Jets Issuing From Double-Beveled Nozzles
,”
ASME J. Fluids Eng.
,
141
(
1
), p.
011202
.10.1115/1.4040447
32.
Chin
,
C.
,
Li
,
M.
,
Harkin
,
C.
,
Rochwerger
,
T.
,
Chan
,
L.
,
Ooi
,
A.
,
Risborg
,
A.
, and
Soria
,
J.
,
2013
, “
Investigation of the Flow Structures in Supersonic Free and Impinging Jet Flows
,”
ASME J. Fluids Eng.
,
135
(
3
), p.
031202
.10.1115/1.4023190
33.
Modesti
,
D.
, and
Pirozzoli
,
S.
,
2017
, “
A Low-Dissipative Solver for Turbulent Compressible Flows on Unstructured Meshes, With Openfoam Implementation
,”
Comput. Fluids
,
152
, pp.
14
23
.10.1016/j.compfluid.2017.04.012
34.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
OpenFOAM: A C++ Library for Complex Physics Simulations
,”
International Workshop on Coupled Methods in Numerical Dynamics
, IUC, Dubrovnik, Croatia, Sept. 19–21, pp.
1
20
.https://csabai.web.elte.hu/http/simulationLab/jasakEtAlOpenFoam.pdf
35.
Liou
,
M.
, and
Steffen
,
C. J.
, Jr.
,
1993
, “
A New Flux Splitting Scheme
,”
J. Comput. Phys.
,
107
(
1
), pp.
23
39
.10.1006/jcph.1993.1122
36.
Arya
,
N.
, and
De
,
A.
,
2019
, “
Effect of Grid Sensitivity on the Performance of Wall Adapting SGS Models for Les of Swirling and Separating–Reattaching Flows
,”
Comput. Math. Appl.
,
78
(
6
), pp.
2035
2051
.10.1016/j.camwa.2019.03.038
37.
Arya
,
N.
, and
De
,
A.
,
2021
, “
Effect of Vortex and Entropy Sources in Sound Generation for Compressible Cavity Flow
,”
Phys. Fluids
,
33
(
4
), p.
046107
.10.1063/5.0044355
38.
Bhaduri
,
S.
,
Ray
,
A.
,
De
,
A.
, and
Sugarno
,
M. I.
,
2024
, “
Flow Control in a Confined Supersonic Cavity Flow Using Subcavity
,”
Front. Mech. Eng.
,
10
, p.
1378433
.10.3389/fmech.2024.1378433
39.
Epikhin
,
A.
,
Evdokimov
,
I.
,
Kraposhin
,
M.
,
Kalugin
,
M.
, and
Strijhak
,
S.
,
2015
, “
Development of a Dynamic Library for Computational Aeroacoustics Applications Using the Openfoam Open Source Package
,”
Proc. Comput. Sci.
,
66
, pp.
150
157
.10.1016/j.procs.2015.11.018
40.
Williams
,
F.
,
E
,
J.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence and Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London. Ser. A
,
264
, pp.
321
342
.10.1098/rsta.1969.0031
41.
Farassat
,
K. B. F.
, and
Brentner
,
K.
,
1998
, “
An Analytical Comparison of the Acoustic Analogy and Kirchhoff Formulation for Moving Surface
,”
AIAA J.
,
36
(
8
), pp.
1379
1386
.10.2514/2.558
42.
Lloyd
,
T. P.
,
Rijpkema
,
D.
, and
Van Wijngaarden
,
E.
,
2014
, “
Implementing the Ffowcs Williams-Hawkings Acoustic Analogy Into a Viscous CFD Solver
,”
17th Numerical Towing Tank Symposium
(
NuTTS
), Gothenburg, Sweden, Sept. 28–30, pp.
111
116
.https://www.researchgate.net/publication/266703718_Implementing_the_Ffowcs_Williams-Hawkings_acoustic_analogy_into_a_viscous_CFD_solver
43.
Chaudhary
,
M.
,
Krishna
,
T. V.
,
Nanda
,
S. R.
,
Karthick
,
S. K.
,
Khan
,
A.
,
De
,
A.
, and
Sugarno
,
I. M.
,
2020
, “
On the Fluidic Behavior of an Over-Expanded Planar Plug Nozzle Under Lateral Confinement
,”
Phys. Fluids
,
32
(
8
), p.
086106
.10.1063/5.0015885
44.
Mendez
,
S.
,
Shoeybi
,
M.
,
Lele
,
S. K.
, and
Moin
,
P.
,
2013
, “
On the Use of the Ffowcs Williams-Hawkings Equation to Predict Far-Field Jet Noise From Large-Eddy Simulations
,”
Int. J. Aeroacoust.
,
12
(
1–2
), pp.
1
20
.10.1260/1475-472X.12.1-2.1
45.
Tam
,
C. K. W.
, and
Chen
,
K. C.
,
1979
, “
A Statistical Model of Turbulence in Two-Dimensional Mixing Layers
,”
J. Fluid Mech.
,
92
(
2
), pp.
303
326
.10.1017/S002211207900063X
46.
Tam
,
C.
,
1995
, “
Supersonic Jet Noise
,”
Annu. Rev. Fluid Mech.
,
27
(
1
), pp.
17
43
.10.1146/annurev.fl.27.010195.000313
47.
Tanna
,
H.
,
1977
, “
An Experimental Study of Jet Noise Part II: Shock Associated Noise
,”
J. Sound Vib.
,
50
(
3
), pp.
429
444
.10.1016/0022-460X(77)90494-1
48.
Bourne
,
H.
, and
Fisher
,
M. J.
,
1974
, “
The Noise From Shock Waves in Supersonic Jets
,”
AGARD
, Neuilly sur Seine, France, Report No.
CP-131.
49.
Norum
,
T.
, and
Seiner
,
J.
,
1980
, “
Location and Propagation of Shock Associated Noise From Supersonic Jets
,”
AIAA
Paper No. 1980-983.10.2514/6.1980-983
50.
Dahl
,
M. D.
, and
Morris
,
P. J.
,
1998
, “
Supersonic Jet Noise Reductions Predicted With Increased Jet Spreading Rate
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
471
476
.10.1115/1.2820686
You do not currently have access to this content.