An analysis is presented of the slider bearing using an electrically conducting lubricant, such as a liquid metal, in the presence of a magnetic field. The solution permits the calculation of the load-carrying capacity of the bearing. A comparison is made with the classical slider bearing solution. It is shown that the load capacity of the bearing depends on the electromagnetic boundary conditions entering through the conductivity of the bearing surfaces. Numerical data are presented for nonconducting surfaces with the emphasis on a comparison between the classical bearing and the magnetohydrodynamic bearing characteristics. It is shown that a significant increase in load capacity is possible with liquid metal lubricants in the presence of a magnetic field.

This content is only available via PDF.
You do not currently have access to this content.