Abstract

To examine the dynamic characteristics of turbomachinery and cavitation, the pulsating flow rates should be evaluated. As it is difficult to measure these pulsating flow rates quantitatively, systematic research has not been conducted on the dynamic characteristics of turbomachinery and cavitation. In this paper, an unsteady energy equation for a venturi tube has been proposed to measure pulsating flow rates. The pulsating flow rates were calculated using two methods based on the unsteady energy equation for incompressible flows. The first method calculated a pulsating flow rate by using the Euler method. The second one calculated the complex amplitude of a pulsating flow rate using a transfer function derived from the linearized unsteady energy equation. We analytically examined the order of magnitude for unsteady terms. The results indicated that the unknown unsteady loss was much smaller than the unsteady momentum. In the experiment, pulsating flows were generated by a reciprocating piston, and the given pulsating flow was measured using a hot wire anemometer. The pulsating flow rates evaluated by using the proposed methods were validated via numerical simulation and experiment. In particular, the influence of amplitudes on the evaluation of pulsating flow rates was numerically examined. Therefore, the nonlinear effect could be evaluated by using the proposed method, and the time-averaged loss coefficient was enough to evaluate the pulsating flow rate coefficient. The proposed unsteady venturi flowmeter can be applied to a wide range of research fields, such as analyzing dynamic characteristics of flows.

References

1.
Zuo
,
Z.
,
Fan
,
H.
,
Liu
,
S.
, and
Wu
,
Y.
,
2016
, “
S-Shaped Characteristics on the Performance Curves of Pump-Turbines in Turbine Mode—A Review
,”
Renewable Sustainable Energy Rev.
,
60
, pp.
836
851
.10.1016/j.rser.2015.12.312
2.
Verdon
,
J. M.
,
1993
, “
Review of Unsteady Aerodynamic Methods for Turbo Machinery Aeroelastic and Aeroacoustic Applications
,”
AIAA J.
,
31
(
2
), pp.
235
250
.10.2514/3.11660
3.
Yamaguchi
,
N.
, and
Tsujimoto
,
Y.
,
2016
, “
Genesis of Researches on Surges in Pumping Systems in Japan
,”
Int. J. Fluid Mach. Syst.
,
9
(
1
), pp.
17
27
.10.5293/IJFMS.2016.9.1.017
4.
Yamaguchi
,
N.
,
2016
, “
A Comparison of Surge Behaviors in Multi-Stage and Single-Stage Axial Flow Compressors
,”
Int. J. Fluid Mach. Syst.
,
9
(
4
), pp.
338
353
.10.5293/IJFMS.2016.9.4.338
5.
Tsujimoto
,
Y.
,
Horiguchi
,
H.
, and
Yonezawa
,
K.
,
2010
, “
Cavitation Instabilities in Turbopump Inducers—Analyses in 1-3 Dimensions
,”
Int. J. Fluid Mach. Syst.
,
3
(
2
), pp.
170
180
.https://www.jstage.jst.go.jp/article/ijfms/3/2/3_2_170/_pdf/-char/en
6.
Cavazzini
,
G.
,
Covi
,
A.
,
Pavesi
,
G.
, and
Ardizzon
,
G.
,
2016
, “
Analysis of the Unstable Behavior of a Pump-Turbine in Turbine Mode: Fluid-Dynamical and Spectral Characterization of the S-Shape Characteristic
,”
ASME J. Fluids Eng.
,
138
(
2
), p.
021105
.10.1115/1.4031368
7.
Kang
,
D.
,
Yonezawa
,
K.
,
Ueda
,
T.
,
Yamanishi
,
N.
,
Kato
,
C.
, and
Tsujimoto
,
Y.
,
2009
, “
Large Eddy Simulation of the Dynamic Response of an Inducer to Flow Rate Fluctuations
,”
Int. J. Fluid Mach. Syst.
,
2
(
4
), pp.
431
438
.10.5293/IJFMS.2009.2.4.431
8.
Kang
,
D.
,
Yamazaki
,
S.
,
Kagawa
,
S.
,
An
,
B.
,
Nohmi
,
M.
, and
Yokota
,
K.
,
2019
, “
Flow Characteristics in a V-Shaped Region of a Suction Performance Curve in a Double-Suction Centrifugal Pump
,”
Int. J. Fluid Mach. Syst.
,
12
(
1
), pp.
89
98
.10.5293/IJFMS.2019.12.1.089
9.
National Aeronautics and Space Administration
,
1970
, “
Prevention of Coupled Structure-Propulsion Instability (POGO)
,”
NASA Space Vehicle Design Criteria (Structures)
,
Washington, DC
, Report No. NASA SP-8055.
10.
Hatano
,
S.
,
Kang
,
D.
,
Kagawa
,
S.
,
Nohmi
,
M.
, and
Yokota
,
K.
,
2014
, “
Study of Cavitation Instabilities in Double-Suction Centrifugal Pump
,”
Int. J. Fluid Mach. Syst.
,
7
(
3
), pp.
94
100
.10.5293/IJFMS.2014.7.3.094
11.
Kawasaki
,
M.
,
Hirahara
,
H.
, and
Kang
,
D.
,
2020
, “
A Study on the Process of Low-Frequency Noise Generation in a Multi-Blade Centrifugal Fan
,”
Int. J. Fluid Mach. Syst.
,
13
(
2
), pp.
292
301
.10.5293/IJFMS.2020.13.2.292
12.
Tsujimoto
,
Y.
,
Yoshida
,
Y.
,
Maekawa
,
Y.
,
Watanabe
,
S.
, and
Hashimoto
,
T.
,
1997
, “
Observations of Oscillating Cavitation of an Inducer
,”
ASME J. Fluid Eng.
,
119
(
4
), pp.
775
781
.10.1115/1.2819497
13.
Brennen
,
C.
,
1978
, “
Bubbly Flow Model for the Dynamic Characteristics of Cavitation Pumps
,”
J. Fluid Mech.
,
89
(
2
), pp.
223
240
.10.1017/S002211207800258X
14.
Tsujimoto
,
Y.
,
Kamijo
,
K.
, and
Yoshida
,
Y.
,
1993
, “
A Theoretical Analysis of Rotating Cavitation in Inducers
,”
ASME J. Fluid Eng.
,
115
(
1
), pp.
135
141
.10.1115/1.2910095
15.
Kang
,
D.
, and
Yokota
,
K.
,
2014
, “
Analytical Study of Cavitation Surge in a Hydraulic System
,”
ASME J. Fluid Eng.
,
136
(
10
), p.
101103
.10.1115/1.4027220
16.
Kawasaki
,
S.
,
Shimura
,
T.
,
Uchiumi
,
M.
, and
Iga
,
Y.
,
2017
, “
One-Dimensional Analysis Method for Cavitation Instabilities of a Rotating Machinery
,”
ASME J. Fluid Eng.
,
140
(
2
), p.
021113
.10.1115/1.4037987
17.
Ng
,
S. L.
, and
Brennen
,
C.
,
1978
, “
Experiments on the Dynamic Behavior of Cavitating Pumps
,”
ASME J. Fluid Eng.
,
100
(
2
), pp.
166
176
.10.1115/1.3448625
18.
Yonezawa
,
K.
,
Aono
,
J.
,
Kang
,
D.
,
Horiguchi
,
H.
,
Kawata
,
Y.
, and
Tsujimoto
,
Y.
,
2012
, “
Numerical Evaluation of Dynamic Transfer Matrix and Unsteady Cavitation Characteristics of an Inducer
,”
Int. J. Fluid Mach. Syst.
,
5
(
3
), pp.
126
133
.10.5293/IJFMS.2012.5.3.126
19.
Yamamoto
,
K.
,
Yonezawa
,
K.
,
Muller
,
A.
,
Avellan
,
F.
, and
Tsujimoto
,
Y.
,
2020
, “
Evaluation of a Dynamic Transfer Matrix for a Hydraulic Turbine
,”
ASME J. Fluid Eng.
,
142
(
4
), p.
041204
.10.1115/1.4045437
20.
Stirnemann
,
A.
,
Eberl
,
J.
,
Bolleter
,
U.
, and
Pace
,
S.
,
1987
, “
Experimental Determination of the Dynamic Transfer Matrix for a Pump
,”
ASME J. Fluid Eng.
,
109
(
3
), pp.
218
225
.10.1115/1.3242651
21.
Shi
,
Y.
,
Lawford
,
P.
, and
Hose
,
R.
,
2011
, “
Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System
,”
BioMed. Eng. Online
,
10
, pp.
1
38
.
22.
Palfreyman
,
D.
, and
Martinez-Botas
,
R. F.
,
2005
, “
The Pulsating Flow in a Mixed Flow Turbocharger Turbine: An Experimental and Computational Study
,”
ASME Turbo Expo
,
127
(
1
), pp.
144
155
.10.1115/1.1812322
23.
Shyang
,
M. L.
,
Anders
,
D.
, and
Mihai
,
M.
,
2018
, “
Influence of Upstream Geometry on Pulsatile Turbocharger Turbine Performance
,”
ASME Paper No. GT2018-76706.
10.1115/GT2018-76706
24.
Kawata
,
Y.
,
Ebara
,
K.
,
Uehara
,
S.
, and
Takata
,
T.
,
1987
, “
System Instability Caused by the Dynamic Behavior of a Centrifugal Pump at Partial Operation
,”
JSME Int. J.
,
30
(
260
), pp.
271
278
.10.1299/jsme1987.30.271
25.
Uchida
,
S.
,
1956
, “
The Pulsating Viscous Flow Superposed on the Steady Laminar Motion of Incompressible Fluid in a Circular Pipe
,”
Z. Angew. Mat. Phys. ZAMP
,
7
(
5
), pp.
403
422
.10.1007/BF01606327
26.
Atabek
,
H. B.
,
Chang
,
C. C.
, and
Fingerson
,
L. M.
,
1964
, “
Measurement of Laminar Oscillatory Flow in the Inlet Length of a Circular Tube
,”
Phys. Med. Biol.
,
9
(
2
), pp.
219
227
.10.1088/0031-9155/9/2/309
27.
Mottram
,
R. C.
,
1971
, “
The Behavior of Orifice and Venturi-Nozzle Meters in Pulsating Flow
,” Ph.D. dissertation,
University of Surrey
,
Guildford, UK
.
28.
Jones
,
E. H.
, Jr.
, and
Bajura
,
R. A.
,
1991
, “
A Numerical Analysis of Pulsating Laminar Flow Through a Pipe Orifice
,”
ASME J. Fluid Eng.
,
113
(
2
), pp.
199
205
.10.1115/1.2909480
29.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
30.
Ribas
,
F. A.
, Jr.
, and
Deschamps
,
C. J.
,
2004
, “
Friction Factor Under Transient Flow Condition
,”
Proceedings of the International Compressor Engineering Conference
,
Purdue University
,
West Lafayette, IN
, July 12–15, Paper No. C097, pp.
1
8
.
31.
Eckmann
,
D. M.
, and
Grotberg
,
J. B.
,
1991
, “
Experiments on Transition to Turbulence in Oscillatory Pipe Flow
,”
J. Fluid Mech.
,
222
(
1
), pp.
329
350
.10.1017/S002211209100112X
32.
Catania
,
A. E.
, and
Ferrari
,
A.
,
2009
, “
Development and Assessment of a New Operating Principle for the Measurement
,”
Flow Meas. Instrum.
,
20
(
6
), pp.
230
240
.10.1016/j.flowmeasinst.2009.08.004
33.
Arnold
,
J. S.
,
1951
, “
An Electromagnetic Flowmeter for Transient Flow Studies
,”
Rev. Sci. Instrum.
,
22
(
1
), pp.
43
55
.10.1063/1.1745737
34.
Melzer
,
S.
,
Munsch
,
P.
,
Forster
,
J.
,
Friderich
,
J.
, and
Skoda
,
R.
,
2020
, “
A System for Time-Fluctuating Flow Rate Measurements in a Single-Blade Pump Circuit
,”
Flow Meas. Instrum.
,
71
, p.
101675
.10.1016/j.flowmeasinst.2019.101675
35.
Kirmse
,
R. E.
,
1979
, “
Investigations of Pulsating Turbulent Pipe Flow
,”
ASME J. Fluid Eng.
,
101
(
4
), pp.
436
442
.10.1115/1.3449007
36.
Brereton
,
G. J.
,
Schock
,
H. J.
, and
Bedford
,
J. C.
,
2008
, “
An Indirect Technique for Determining Instantaneous Flow Rate From Centerline Velocity in Unsteady Duct Flows
,”
Flow Meas. Instrum.
,
19
(
1
), pp.
9
15
.10.1016/j.flowmeasinst.2007.08.001
37.
Colonia
,
S.
, and
Romano
,
G. P.
,
2014
, “
Steady and Pulsating Turbulent Flows in Complex Pipe Geometries
,”
ASME J. Fluid Eng.
,
136
(
11
), p.
111201
.10.1115/1.4027825
38.
Yamanaka
,
G.
,
Kikura
,
H.
,
Takeda
,
Y.
, and
Aritomi
,
M.
,
2003
, “
Flow Measurement on Oscillating Pipe Flow Near the Entrance Using the UVP Method
,”
Exp. Fluids
,
34
(
3
), pp.
307
315
.10.1007/s00348-002-0437-4
39.
Goltsman
,
A. E.
,
Davletshin
,
I. A.
, and
Paereliy
,
A. A.
,
2013
, “
PIV Method for Research of the Structure of Pulsating Flow in a Smooth Duct
,”
Thermophys. Aeromech.
,
20
(
3
), pp.
359
366
.10.1134/S0869864313030141
40.
Leontidis
,
V.
,
Cuvier
,
C.
,
Caignaert
,
G.
,
Dupont
,
P.
,
Roussette
,
O.
,
Fammery
,
S.
,
Nivet
,
P.
, and
Dazin
,
A.
,
2018
, “
Experimental Validation of an Ultrasonic Flowmeter for Unsteady Flows
,”
Meas. Sci. Technol.
,
29
(
4
), p.
045303
.10.1088/1361-6501/aaa65f
41.
Rathore
,
V.
,
Ahmad
,
Z.
, and
Kashyap
,
D.
,
2015
, “
Modelling of Transient Flow in Pipes With Dynamic Friction
,”
Proceedings of the 20th International Conference on Hydraulics
,
IIT Roorkee, India
, Dec. 17–19, pp.
1
9
.https://www.researchgate.net/publication/317340890_Modeling_of_Transient_flow_in_pipes_with_Dynamic_Friction
42.
Beaulieu
,
A.
,
Foucault
,
E.
,
Braud
,
P.
,
Micheau
,
P.
, and
Szeger
,
P.
,
2011
, “
A Flowmeter for Unsteady Liquid Flow Measurements
,”
Flow Meas. Instrum.
,
22
(
2
), pp.
131
137
.10.1016/j.flowmeasinst.2011.01.001
43.
Hollingshead
,
C. L.
,
Johnson
,
M. C.
,
Barfuss
,
S. L.
, and
Spall
,
R. E.
,
2011
, “
Discharge Coefficient Performance of Venturi, Standard Concentric Orifice Plate, V-Cone and Wedge Flow Meters at Low Reynolds Numbers
,”
J. Pet. Sci. Eng.
,
78
(
3–4
), pp.
559
566
.10.1016/j.petrol.2011.08.008
44.
Japanese Industrial Standards Committee
,
2007
, “
Flow Rate Measurement Method Using a Restriction Mechanism for Circular Pipes—Part 4: Venturi Tubes
,”
Japanese Industrial Standards Committee
,
Tokyo, Japan
, Standard No. JIS Z 8762–4.
45.
Abernethy
,
R. B.
,
Benedict
,
R. P.
, and
Dowdell
,
R. B.
,
1985
, “
ASME Measurement Uncertainty
,”
ASME J. Fluid Eng.
,
107
(
2
), pp.
161
164
.10.1115/1.3242450
You do not currently have access to this content.