This paper develops a nonlinear ordinary differential equation (O.D.E.) of motion for a disk parallel to a flat plate and levitated by incompressible laminar flow of fluid supplied from a central orifice. The fluid’s inertia, reflected in high mass flow rates, is accounted for. The transient flow velocity and pressure field are found by iterative integration of the Navier-Stokes equation to determine the O.D.E. for the time-dependent height of the disk (or fluid film thickness). The film thickness is found by not only numerically integrating the O.D.E., but also by linearizing the equation to obtain a closed-form solution. The results of this combined squeeze-film, source-flow case compare favorably with experimental data presented which span cases from negligible inertia (viscous dominance) to cases of inertia dominance. Fortunately, the closed-form solution differs only slightly from the numerical solution; this provides relatively accurate expressions for the frequencies and damping coefficients in terms of the geometry, load (or weight of disk), mass flow rate, and the fluid properties.

This content is only available via PDF.
You do not currently have access to this content.