Abstract

Currently, waste heat rejection from electrical power systems accounts for the largest fraction of water withdrawals from the U.S. fresh water table. Siting of nuclear power plants is limited to areas with access to a large natural supply of fresh or sea water. Due to a rise in energy needs and increased concern over environmental impact, dry air cooling systems are poised to play a large role in the future energy economy. In practice, the implementation of dry air-cooled condensing systems at steam plants has proven to be capital-intensive and requires the power cycle to take a significant efficiency penalty. These shortcomings are fundamental to dry-air steam condensation, which must occur at a fixed temperature. Closed-cycle gas turbines are an alternative to the conventional steam Rankine plant that allows for much improved dry heat rejection compatibility. Recent research into advanced nuclear energy systems has identified the supercritical CO2 (s-CO2) Brayton cycle in particular as a viable candidate for many proposed reactor types. The s-CO2 Brayton cycle can maintain superior thermal efficiency over a wide range of ambient temperatures, making these power systems ideally suited for dry air cooling, even in warm climates. For a sodium fast reactor (SFR) operating at 550 °C, thermal efficiency is calculated to be 43% with a 50 °C compressor inlet temperature. This is achieved by raising CO2 compressor inlet pressure in response to rising ambient temperatures. Preliminary design studies have shown that s-CO2 power cycle hardware will be compact and therefore well-matched to near-term and advanced integral small modular reactor (SMR) designs. These advantages also extend to the cooling plant, where it is estimated that dry cooling towers for an SFR-coupled s-CO2 power cycle will be similar in cost and scale to the evaporative cooling tower for a light-water reactor (LWR). The projected benefits of the s-CO2 power cycle coupled to dry air heat rejection may enable the long-awaited rise of next-generation nuclear energy systems, while redrawing the map for siting of small and large nuclear energy systems.

References

1.
Acharya
,
S.
,
Bushart
,
S.
, and
Shi
,
J.
,
2013
, “
NSF/EPRI Collaboration on `Water for Energy'—Advanced Dry Cooling for Power Plants
,” National Science Foundation, Arlington, VA, Program Solicitation NSF-13-564.
2.
EPRI
,
2008
, “
Application of Dry Cooling in Nuclear Power Plants
,” Advanced Cooling Technologies Project Proposal, Electric Power Research Institute, Palo Alto, CA.
3.
Cizek
,
N
.,
2012
, “
Emerging Ideas
,” APRA-E Workshop on No- and Low-Water Power Plant Cooling, APRA-E, Washington, DC, March 28.
4.
Schoene
,
T. W.
,
1974
, “
The HTGR Gas Turbine Plant With Dry Air Cooling
,”
Nucl. Eng. Des.
,
26
(1)
, pp.
170
178
.10.1016/0029-5493(74)90052-1
5.
Forsberg
,
C. W.
,
Peterson
,
P. F.
, and
Zhao
,
H.
,
2006
, “
Sustainability and Economics of the Advanced High-Temperature Reactor
,”
J. Energy Eng.
,
132
(
3
), pp.
109
115
.10.1061/(ASCE)0733-9402(2006)132:3(109)
6.
Dostal
,
V.
,
2004
, “
A Supercritical CO2 Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
7.
Dostal
,
V.
, and
Kulhanek
,
M.
,
2009
, “
Research on the Supercritical Carbon Dioxide Cycles in the Czech Republic
,”
Proceedings of the Supercritical CO2 Power Cycle Symposium
,
Troy, NY
, April 29–30.
8.
Dostal
,
V.
, and
Dostal
,
J.
,
2011
, “
Supercritical CO2 Regeneration Bypass Cycle: Comparison to Traditional Layouts
,”
Supercritical CO2 Power Cycle Symposium
,
Boulder, CO
, May 24–25.
9.
Moisseytsev
,
A.
, and
Sienicki
,
J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(7)
, pp.
1362
1371
.10.1016/j.nucengdes.2009.03.017
10.
Wright
,
I. G.
,
Pint
,
B. A.
,
Shingledecker
,
J. P.
, and
Thimsen
,
D.
,
2013
, “
Materials Considerations for Supercritical CO2 Turbine Cycles
,”
ASME
Paper No. GT2013-94941.10.1115/GT2013-94941
11.
Dyreby
,
J.
,
Klein
,
S.
,
Nellis
,
G.
, and
Reindl
,
D.
,
2013
, “
Modeling Off-Design and Part-Load Performance of Supercritical Carbon Dioxide Power Cycles
,”
ASME
Paper No. GT2013-95824.10.1115/GT2013-95824
12.
NEI
,
2012
, “Water Use and Nuclear Power Plants: Fact Sheet,” Nuclear Energy Institute, Washington, DC, available at: http://www.nei.org/CorporateSite/media/filefolder/Backgrounders/Fact-Sheets/Water-Use-and-Nuclear-Power-Plants-Nov-2013.pdf?ext=.pdf
13.
Reyes
,
J.
,
2012
, “
NuScale Plant Safety in Response to Extreme Events
,”
Nucl. Technol.
,
178
(
2
), pp.
153
163
.
14.
Babcock and Wilcox
Co.,
2012
, “Generation mPower Snapshot,” The Babcock & Wilcox Co., Charlotte, NC, available at: http://www.generationmpower.com/pdf/sp201100.pdf
15.
Szabo
,
Z.
,
Gregasz
,
A.
, and
Mezey
,
Z.
,
2011
, “
Water Conservation Type Cooling Systems for Nuclear Power Plants
,”
3rd Annual Meeting of Air-Cooled Condensers Users Group
,
San Francisco, CA
, September 19–21.
16.
Mays
,
G.
,
Belles
,
R.
,
Blevins
,
B.
,
Hadley
,
S.
,
Harrison
,
T.
,
Jochem
,
W.
,
Neish
,
B.
,
Omitaomu
,
O.
, and
Rose
,
A.
,
2012
, “
Application of Spatial Data Modeling and Geographical Information Systems (GIS) for Identification of Potential Siting Options for Various Electrical Generation Sources
,” Oak Ridge National Laboratory, Oak Ridge, TN, Report No. ORNL/TM-2011/157/R1.
17.
Mendelsohn
,
M.
,
Lowder
,
T.
, and
Canavan
,
B.
,
2012
, “
Utility-Scale Concentrating Solar Power and Photovoltaics Projects: A Technology and Market Overview
,” National Renewable Energy Laboratory, Golden, CO, Technical Report No. NREL/TP-6A20-51137.
18.
SPX
,
2012
, “Indirect Natural Draft Dry Cooling,” SPX Corp., Overland Park, KS, Report No. A4 Dry-IDCT-12, available at: http://spxcooling.com/pdf/DRY-IDCT-13.pdf
19.
Kutscher
,
C.
,
Buys
,
A.
, and
Gladden
,
C.
,
2006
, “
Hybrid Wet/Dry Cooling for Power Plants
,” Parabolic Trough Technology Workshop, Incline Village, NV, February 14–16, Paper No. NREL/PR-550-40026.
20.
Waddill
,
J.
,
2008
, “
North Anna Unit 3 Hybrid Cooling
,” EPRI Workshop on Advanced Cooling Technologies, Charlotte, NC, July 8–9.
21.
Feher
,
E.
,
1967
, “
The Supercritical Thermodynamic Power Cycle
,”
2nd International Energy Conversion Engineering Conference (IECEC)
,
Miami Beach, FL
, August 13–17, Paper No. 4348.
22.
Angelino
,
G.
,
1967
, “
Perspectives on the Liquid Phase Compression Gas Turbine
,”
ASME J. Eng. Power
,
89
(
2
), pp.
229
237
.10.1115/1.3616657
23.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,” ASME Paper No. 68-GT-23.10.1115/68-GT-23
24.
Gokhstein
,
D
.,
1969
, “
Use of Carbon Dioxide as a Heat Carrier and Working Fluid in Atomic Power Stations
,”
Sov. At. Energy
,
26
(
4
), pp. 430–432.
25.
U.S. DOE
, Nuclear Energy Research Advisory Committee and the Generation IV International Forum, 2002, “A Technology Roadmap for Generation IV Nuclear Energy Systems,” available at: https://www.gen-4.org/gif/upload/docs/application/pdf/2013-09/genivroadmap2002.pdf
26.
Wright
,
S. A.
,
Radel
,
R. F.
,
Vernon
,
M. E.
,
Rochau
,
G. E.
, and
Pickard
,
P. S.
,
2010
, “
Operation and Analysis of a Supercritical CO2 Brayton Cycle
,” Sandia National Laboratories, Albuquerque, NM, Technical Report No. SAND2010-0171, available at: http://prod.sandia.gov/techlib/access-control.cgi/2010/100171.pdf
27.
Conboy
,
T. M.
,
Wright
,
S.
,
Pasch
,
J.
,
Fleming
,
D.
,
Rochau
,
G.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycle
,”
ASME J. Eng. Gas Turbines Power
,
134
(11)
, p.
111703
.10.1115/1.4007199
28.
Conboy
,
T. M.
,
Pasch
,
J.
, and
Fleming
,
D.
,
2013
, “
Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
,”
ASME J. Eng. Gas Turbines Power
,
135
(11)
, p.
111701
.10.1115/1.4025127
29.
Turchi
,
C.
,
Ma
,
Z.
,
Neises
,
T.
, and
Wagner
,
M.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(4)
, p.
041007
.10.1115/1.4024030
30.
Iverson
,
B. D.
,
Conboy
,
T. M.
,
Pasch
,
J. J.
, and
Kruizenga
,
A. M.
,
2013
, “
Supercritical CO2 Brayton Cycles for Solar-Thermal Energy
,”
Appl. Energy
,
111
, pp.
957
970
.10.1016/j.apenergy.2013.06.020
31.
Moisseytsev
,
A.
, and
Sienicki
,
J.
,
2008
, “
Transient Accident Analysis of a Supercritical Carbon Dioxide Brayton Cycle Energy Converter Coupled to an Autonomous Lead-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
238
(8)
, pp.
2094
2105
.10.1016/j.nucengdes.2007.11.012
32.
Baccaglini
,
G.
,
Ball
,
S.
,
Burchell
,
T.
,
Corwin
,
B.
,
Fewell
,
T.
,
LaBar
,
M.
,
MacDonald
,
P.
,
Rittenhouse
,
P.
,
Shaber
,
E.
,
Southworth
,
F.
, and
Vollman
,
R.
,
2003
, “
Very High Temperature Reactor (VHTR): Survey of Materials Research and Development Needs to Support Early Deployment
,” Idaho National Laboratory, Idaho Falls, ID, Report No. INEEL/EXT-03-00141, available at: http://www.inl.gov/technicalpublications/Documents/2559926.pdf
33.
Hejzlar
,
P.
,
Todreas
,
N. E.
,
Shwageraus
,
E.
,
Nikiforova
,
A.
,
Petroski
,
R.
, and
Driscoll
,
M. J.
,
2009
, “
Comparison of Fast Reactor Concepts With Various Coolants
,”
Nucl. Eng. Des.
,
239
(12)
, pp.
2672
2691
.10.1016/j.nucengdes.2009.07.007
34.
Johnson
,
G. A.
,
McDowell
,
M. W.
,
O'Connor
,
G. M.
,
Sonwane
,
C. G.
, and
Subbaraman
,
G.
,
2012
, “
Supercritical CO2 Cycle Development at Pratt & Whitney Rocketdyne
,”
ASME
Paper No. GT2012-70105.10.1115/GT2012-70105
35.
Pope
,
M.
, “
Thermal-Hydraulic Design of a 2400 MWth Supercritical CO2-Cooled Fast Reactor
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.
36.
Parma, E. J., Wright, S. A., Vernon, M. E., Rochau, G. E., Suo-Anttila, A. J. Al Rashdan, A, and Tsvetkov, P. V.
2011
, “
Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept
,”
Proceedings of the Supercritical CO2 Power Cycle Symposium
,
Boulder, CO
, May 24–25.
37.
Yoon
,
H. J.
,
Ahn
,
Y. H.
,
Lee
,
J. I.
, and
Addad
,
Y.
,
2012
, “
Potential Advantages of Coupling Supercritical CO2 Brayton Cycle to Water Cooled Small and Medium Size Reactor
,”
Nucl. Eng. Des.
,
245
, pp.
223
232
.10.1016/j.nucengdes.2012.01.014
38.
Perez-Pichel
,
G. D.
,
Linares
,
J. I.
,
Herranz
,
L. E.
, and
Moratilla
,
B. Y.
,
2012
, “
Thermal Analysis of Supercritical CO2 Power Cycles: Assessment of Their Suitability to the Forthcoming Sodium Fast Reactors
,”
Nucl. Eng. Des.
,
250
, pp.
23
34
.10.1016/j.nucengdes.2012.05.011
39.
Eoh
,
J. H.
,
No
,
H. C.
,
Lee
,
Y. B.
, and
Kim
,
S. O.
,
2013
, “
Potential Sodium-CO2 Interaction of a Supercritical CO2 Power Conversion Option Coupled With an SFR: Basic Nature and Design Issues
,”
Nucl. Eng. Des.
,
259
, pp.
88
101
.10.1016/j.nucengdes.2013.01.002
40.
GE-Hitachi Nuclear Energy
,
2009
, “PRISM Technical Brief," GE-Hitachi, Wilmington, NC, available at: http://www.uxc.com/smr/Library%5CDesign%20Specific/PRISM/Other%20Documents/Technical%20Brief.pdf
41.
Nellis
,
G.
, and
Klein
,
S. A.
,
2009
,
Heat Transfer
,
Cambridge University Press
,
New York
.
42.
Lennon
,
S.
,
2011
, “
Advances in Dry Cooling Deployed at South African Power Stations
,” Electrical Power Research Institute (EPRI) 2011 Summer Seminar, San Diego, CA, August 1–2.
43.
Fortescue
,
P.
,
1971
, “
Tomorrow's Plant: Gas Turbines, Nuclear Power, Dry Cooling
,”
Power Eng.
, 75(8), pp.
45
47
.
You do not currently have access to this content.