Abstract

In this paper, test data are combined with results from two different computational fluid dynamics (CFD) models to investigate the leakage performance of leaf seals. Experimental data are gathered for centric rotor position using a rotating test rig at various rotational speeds, inlet pressures, and preswirl velocities. The test results are compared to brush and labyrinth seal leakage data from previous studies and reveal elevated leakage rates of the leaf seal. As the tested leaf seals are subject to thermal leaf deformation from welding during the manufacturing process, the influence of geometry variations within the leaf pack on leakage performance is investigated with the help of numerical simulations. Both a fully resolved leaf model and a modeling approach based on porous media are used. The CFD models are validated based on pressure measurements within the up- and downstream coverplate gaps at three different radii. Both CFD models show good agreement with test data for different inlet parameters. A variation of cold clearance shows moderate influence on leakage and small clearances can be brought into context with hydrodynamic lift-up indicated by experimental leakage data. Much higher sensitivity on leakage mass flow is predicted for variations in leaf spacing at the leaf root and leaf tip. The latter is discussed as an explanation for the measured leakage of the test seal with its manufacturing variations, while the first quantitatively shows optimization potential at the design stage of leaf seals.

References

1.
Shinohara
,
T.
,
Akagi
,
K.
,
Yuri
,
M.
,
Toyoda
,
M.
,
Ozawa
,
Y.
,
Kawaguchi
,
A.
,
Sakakibara
,
S.
,
Yoshida
,
Z.
,
Kunitake
,
N.
,
Ohta
,
T.
,
Nakane
,
H.
,
Ito
,
E.
,
Kawata
,
Y.
, and
Takeshita
,
K.
,
2002
, “
Shaft seal and Turbine Using the Same
,”
U.S. Patent No. 6343792
.https://patents.google.com/patent/US6343792/ar
2.
Watanabe
,
E.
,
Tanaka
,
Y.
,
Nakano
,
T.
,
Ohyama
,
H.
,
Tanaka
,
K.
,
Miyawaki
,
T.
,
Tsutsumi
,
M.
, and
Shinohara
,
T.
,
2003
, “
Development of New High Efficiency Steam Turbine: Technical Review
,” Mitsubishi Heavy Industries, Ltd, Tokyo, Japan,
Technical Review
,
40
(
4
).https://www.mhi.co.jp/technology/review/pdf/e404/e404212.pdf
3.
Nakane
,
H.
,
Maekawa
,
A.
,
Akita
,
E.
,
Akagi
,
K.
,
Nakano
,
T.
,
Nishimoto
,
S.
,
Hashimoto
,
S.
,
Shinohara
,
T.
, and
Uehara
,
H.
,
2004
, “
The Development of High-Performance Leaf Seals
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
342
350
.10.1115/1.1615257
4.
Arimura
,
H.
,
Iwasaki
,
Y.
,
Fukuizumi
,
Y.
,
Shiozaki
,
S.
, and
Kallianpur
,
V.
,
2005
, “
Upgraded M501G Operating Experience
,”
ASME Paper No. GT2005-69135
.10.1115/GT2005-69135
5.
Hendricks
,
R.
,
Braun
,
M.
,
Deng
,
D.
, and
Hendricks
,
J.
,
2006
, “
Compliant Turbomachine Sealing
,”
11th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
,
Honolulu, HI
, Feb. 26–Mar. 2,
Paper No. 54-ISROMAC-11
.https://ntrs.nasa.gov/search.jsp?R=20110012885
6.
Jahn
,
I.
,
Franceschini
,
G.
,
Owen
,
A.
, and
Gillespie
,
D.
,
2008
, “
Experimental Characterisation of the Stiffness and Leakage of a Prototype Leaf Seal for Turbine Applications
,”
ASME Paper No. GT2008-51206
.10.1115/GT2008-51206
7.
Pekris
,
M.
,
Franceschini
,
G.
,
Jahn
,
I.
, and
Gillespie
,
D.
,
2016
, “
Experimental Investigation of a Leaf Seal Prototype at Engine-Representative Speeds and Pressures
,”
ASME J. Eng. Gas Turbines Power
,
138
(
7
), p.
072502
.10.1115/1.4031875
8.
Pekris
,
M. J.
,
Nasti
,
A.
,
Jahn
,
I. H. J.
, and
Franceschini
,
G.
,
2016
, “
High-Speed Characterization of a Prototype Leaf Seal on an Advanced Seal Test Facility
,”
ASME J. Eng. Gas Turbines Power
,
138
(
8
), p.
82503
.10.1115/1.4032422
9.
Pekris
,
M.
,
Franceschini
,
G.
,
Owen
,
A.
,
Jones
,
T.
, and
Gillespie
,
D.
,
2016
, “
Analytical Modeling and Experimental Validation of Heating at the Leaf Seal/Rotor Interface
,”
ASME Paper No. GT2016-57577
.10.1115/GT2016-57577
10.
Pelegrin-Garcia
,
J.
,
D.
,
Gillespie
,
D.
,
Franceschini
,
G.
,
Pekris
,
M.
, and
Ganin
,
L.
,
2017
, “
Experimental Characterization of Rotor Convective Heat Transfer Coefficients in the Vicinity of a Leaf Seal
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
031901
.10.1115/1.4034519
11.
Deo
,
H.
,
2011
, “
Compliant Plate Seals for Turbomachinery Applications
,”
ASME Paper No. IMECE2011-64871
.10.1115/IMECE2011-64871
12.
Deo
,
H.
,
2012
, “
Compliant Plate Seals: Testing and Validation
,”
ASME Paper No. GT2012-69356
.10.1115/GT2012-69356
13.
Adis
,
W.
,
Mack
,
M.
, and
Deo
,
H.
,
2014
, “
Side Weld and Bend Method of Manufacturing Compliant Plate Seals
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p.
022101
.10.1115/1.4025358
14.
Bischelmaier
,
G.
,
Benoni
,
A.
, and
Willinger
,
R.
,
2011
, “
Computation of Leaf Seal Flow Using a Porous Medium Approach
,”
Ninth European Conference on Turbomachinery
,
Istanbul, Turkey
, Mar. 21–25, pp.
57
66
.https://www.researchgate.net/publication/289422701_Computation_of_leaf_seal_flow_using_a_porous_medium_approach
15.
Deo
,
H.
,
Rao
,
A.
, and
Gedam
,
H.
,
2012
, “
Compliant Plate Seals: Design and Performance Simulations
,”
ASME Paper No. GT2012-69348
.10.1115/GT2012-69348
16.
Han
,
J.
,
2015
, “
Simulation on Leakage and Dynamic Characteristics of Leaf Seal
,”
ASME Paper No. IMECE2015-53829
.10.1115/IMECE2015-53829
17.
Fico
,
V.
,
Pekris
,
M.
,
Barnes
,
C.
,
J.
,
Jha
,
R.
,
K.
, and
Gillespie
,
D.
,
2017
, “
Computational Fluid Dynamics and Thermal Analysis of Leaf Seals for Aero-Engine Application
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072504
.10.1115/1.4035595
18.
Gaszner
,
M.
,
Pugachev
,
A.
,
O.
,
Georgakis
,
C.
, and
Cooper
,
P.
,
2013
, “
Leakage and Rotordynamic Coefficients of Brush Seals With Zero Cold Clearance Used in an Arrangement With Labyrinth Fins
,”
ASME J. Eng. Gas Turbines Power
,
135
(
12
), p.
122506
.10.1115/1.4025236
19.
Pugachev
,
A.
,
O.
, and
Helm
,
P.
,
2009
, “
Calibration of Porous Medium Models for Brush Seals
,”
Proc. Inst. Mech. Eng., Part A
,
223
(
1
), pp.
83
91
.10.1243/09576509JPE641
20.
Pugachev
,
A. O.
, and
Deckner
,
M.
,
2010
, “
CFD Prediction and Test Results of Stiffness and Damping Coefficients for Brush-Labyrinth Gas Seals
,”
ASME Paper No. GT2010-22667
.10.1115/GT2010-22667
21.
American Society of Mechanical Engineers,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
22.
Wagner
,
W.
,
2012
,
Strömung und Druckverlust
, Vol.
7
,
Vogel
,
Würzburg, Germany
.
23.
ANSYS
,
2013
, “
ANSYS CFX-Solver Modeling Guide: Release 15.0
,”
ANSYS
,
Southpointe, PA
.
24.
Gaszner
,
M.
,
2015
, “
Rotordynamische Charakterisierung von Dichtungssystemen zur Anwendung in Kraftwerksdampfturbinen
,” Ph.D. thesis,
Technische Universität München
,
München, Germany
.
You do not currently have access to this content.